Linux内核源码分析之setup_arch (一)
1. 概述
之前已经写了几篇Linux内核启动相关的文章,比如:《解压内核镜像》《调用 start_kernel》都是用汇编语言写的,这些代码的作用仅仅是把内核镜像放置到特定的位置,同时配置好C语言的运行环境,再有就是简单的把内核镜像所在区域的页表设置一下,在开启MMU之后就正式开始了C语言代码的执行,C语言代码的入口是start_kernel这个函数,本文要介绍其中的set_arch这个函数,该函数的作用是查找给定机器ID的数据结构信息、配置内存条信息、解析bootloader传递命令行参数,然后根据machine_desc结构体所记录的信息对机器进行一些必要的设置,最后开始正式建立完整的页表,大致流程如下图所示。
2. set_processor
该函数首先调用汇编代码来查找给定机器ID的proc_info数据,找到之后取出其中的processor结构体,该结构体中包含了很多任务切换相关的底层函数。
/* arch/arm/kernel/setup.c */
list = lookup_processor_type(read_cpuid_id());
/* arch/arm/kernel/head-common.S */
ENTRY(lookup_processor_type)
stmfd sp!, {r4 - r6, r9, lr}
mov r9, r0
bl __lookup_processor_type
mov r0, r5
ldmfd sp!, {r4 - r6, r9, pc}
ENDPROC(lookup_processor_type)
cacheid_init函数根据CPU ID设置缓冲相关的标志位;cpu_init调用刚刚找到的processor中的processor._proc_init函数,不过该函数没有做什么实际操作。
/* arch/arm/mm/proc-v7.S */
ENTRY(cpu_v7_proc_init)
mov pc, lr
ENDPROC(cpu_v7_proc_init)
设置内核启动时所在CPU不同异常模式下的栈指针。
/* arch/arm/kernel/setup.c::cpu_init */
__asm__ (
"msr cpsr_c, %1\n\t"
"add r14, %0, %2\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %3\n\t"
"add r14, %0, %4\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %5\n\t"
"add r14, %0, %6\n\t"
"mov sp, r14\n\t"
"msr cpsr_c, %7"
:
: "r" (stk),
PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
"I" (offsetof(struct stack, irq[0])),
PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
"I" (offsetof(struct stack, abt[0])),
PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
"I" (offsetof(struct stack, und[0])),
PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
: "r14");
3. setup_machine_tags
根据机器ID查找machine_desc结构体,如果没有找到就打印一条提示信息,然后直接宕机。而此时使用的打印函数是early_print的话,再根据《printk流程分析》,此时其实还没有注册console驱动,因此如果没有打开early_printk功能,则系统就悄无声息的死机了。
/* arch/arm/kernel/setup.c */
for_each_machine_desc(p)
if (nr == p->nr) {
printk("Machine: %s\n", p->name);
mdesc = p;
break;
}
找到mdesc之后,执行mdesc->fixup(),该调用实际执行的函数是定义在cpu.c中的cpu_fixup函数,该函数的作用是设置内存条个数以及对应物理起始地址和大小。
/* arch/arm/kernel/setup.c */
if (mdesc->fixup)
mdesc->fixup(tags, &from, &meminfo);
/* arch/arm/mach-s5p4418/cpu.c */
MACHINE_START(S5P4418, NXP_MACH_NAME)
.atag_offset = 0x00000100,
.fixup = cpu_fixup,
.map_io = cpu_map_io,
.init_irq = nxp_cpu_init_irq,
#ifdef CONFIG_ARM_GIC
.handle_irq = gic_handle_irq,
#else
.handle_irq = vic_handle_irq,
#endif
.timer = &nxp_cpu_sys_timer,
.init_machine = cpu_init_machine,
#if defined CONFIG_CMA && defined CONFIG_ION
.reserve = cpu_mem_reserve,
#endif
MACHINE_END
static void __init cpu_fixup(...)
{
mi->nr_banks = 1;
mi->bank[0].start = CFG_MEM_PHY_SYSTEM_BASE;
#if !defined(CFG_MEM_PHY_DMAZONE_SIZE)
mi->bank[0].size = CFG_MEM_PHY_SYSTEM_SIZE;
#else
mi->bank[0].size = CFG_MEM_PHY_SYSTEM_SIZE + CFG_MEM_PHY_DMAZONE_SIZE;
#endif
}
接下来就是解析bootloader传递的命令行参数,通过tag->hdr.tag查找内核中预置的对应类型tag的解析函数,然后调用对应类型tag的parse函数即可实现对参数的解析。
/* arch/arm/kernel/setup.c */
static int __init parse_tag(const struct tag *tag)
{
extern struct tagtable __tagtable_begin, __tagtable_end;
struct tagtable *t;
for (t = &__tagtable_begin; t < &__tagtable_end; t++)
if (tag->hdr.tag == t->tag) {
t->parse(tag);
break;
}
return t < &__tagtable_end;
}
/* arch/arm/kernel/setup.h */
struct tagtable {
__u32 tag;
int (*parse)(const struct tag *);
};
4. 总结
为了避免文章篇幅太长,所以会拆分成三四篇来写,下面是本文的总结:
- setup_processor:根据给定机器ID查找机器描述信息,然后再根据CPU ID设置cache相关的标志位,再执行processor._proc_init对处理器进行初始化,最后设置CPU不同异常模式下的栈指针;
- setup_machine_tags:根据机器ID查找machine_desc结构体,然后执行cpu_fixup函数配置内存条信息,最后解析bootloader传递的命令行参数。