大数据时序分析组件druid获取kafka和hdfs数据示例

1.说明

a. druid支持获取数据种类较多,包括本地离线数据,hdfs数据和kafka实时流数据。在实际基于hadoop生态系统的大数据开发应用中,获取hdfs数据和kafka流式数据较为常见。本篇文档着重说明获取kafka和hdfs数据的实例。
b. 想要获取什么样类型的数据,就需要在配置文件配置(这里默认druid集群或单击已经搭建完成,如果没有搭建,参照上篇博客)。vim ${DRUID_HOME}/conf/druid/cluster/_common/common.runtime.properties

druid.extensions.loadList=["druid-hdfs-storage","mysql-metadata-storage","druid-kafka-indexing-service"]

c. 获取数据的方法有两种,第一种就是通过页面傻瓜式的下一步,如图

只需要相关信息填写正确,按照箭头方向每一步正确操作即可
第二种方式是自己写json配置文件,通过执行命令。其实这两种方式本事是一样的。只不过第一种方式是在页面操作后生成了json文件。但实际开发中,还是建议选择第二种方式。下面基于获取kafka和hdfs上的数据来介绍第二种方式。

2.实时获取kafka数据流

a. druid自带了一个获取kafka数据样例,${DRUID_HOME}/quickstart/tutorial/wikipedia-kafka-supervisor.json,直接在此基础上改成自己的正确的配置

{
  "type": "kafka",
  "spec" : {
    "dataSchema": {
      "dataSource": "my-wikipedia",
      "timestampSpec": {
        "column": "time",
        "format": "auto"
      },
      "dimensionsSpec": {
        "dimensions": [
          "channel",
          "cityName",
          "comment",
          "countryIsoCode",
          "countryName",
          "isAnonymous",
          "isMinor",
          "isNew",
          "isRobot",
          "isUnpatrolled",
          "metroCode",
          "namespace",
          "page",
          "regionIsoCode",
          "regionName",
          "user",
          {
            "name": "added",
            "type": "long"
          },
          {
            "name": "deleted",
            "type": "long"
          },
          {
            "name": "delta",
            "type": "long"
          }
        ]
      },
      "metricsSpec": [],
      "granularitySpec": {
        "type": "uniform",
        "segmentGranularity": "DAY",
        "queryGranularity": "NONE",
        "rollup": false
      }
    },
    "tuningConfig": {
      "type": "kafka",
      "reportParseExceptions": false
    },
    "ioConfig": {
      "topic": "my-wikipedia",
      "inputFormat": {
        "type": "json"
      },
      "replicas": 1,
      "taskDuration": "PT10M",
      "completionTimeout": "PT20M",
      "consumerProperties": {
        "bootstrap.servers": "master:9092"
      }
    }
  }
}

b. 执行命令

curl -XPOST -H'Content-Type: application/json' -d @quickstart/tutorial/wikipedia-kafka-supervisor.json http://master:8081/druid/indexer/v1/supervisor

执行上述命令出现{"id":"my-wikipedia"}的结果证明是成功的
在druid页面也正确看到任务的状况,如下图,表示完全成功

c.往kafka写和配置匹配的样例数据,就可以在query页面查看到写入的数据了

3. 获取hdfs数据

a. 获取hdfs数据和kafka数据只是在配置文件上有所区别,druid也自带了一个获取hdfs数据样例,${DRUID_HOME}/quickstart/tutorial/wikipedia-index-hadoop.json,这里我将其给名为my-wikipedia-index-hadoop.json,直接在此基础上改成自己的正确的配置

{
  "type" : "index_hadoop",
  "spec" : {
    "dataSchema" : {
      "dataSource" : "my-hdfs-wikipedia",
      "parser" : {
        "type" : "hadoopyString",
        "parseSpec" : {
          "format" : "json",
          "dimensionsSpec" : {
            "dimensions" : [
              "channel",
              "cityName",
              "comment",
              "countryIsoCode",
              "countryName",
              "isAnonymous",
              "isMinor",
              "isNew",
              "isRobot",
              "isUnpatrolled",
              "metroCode",
              "namespace",
              "page",
              "regionIsoCode",
              "regionName",
              "user",
              { "name": "added", "type": "long" },
              { "name": "deleted", "type": "long" },
              { "name": "delta", "type": "long" }
            ]
          },
          "timestampSpec" : {
            "format" : "auto",
            "column" : "time"
          }
        }
      },
      "metricsSpec" : [],
      "granularitySpec" : {
        "type" : "uniform",
        "segmentGranularity" : "day",
        "queryGranularity" : "none",
        "intervals" : ["2015-09-12/2015-09-13"],
        "rollup" : false
      }
    },
    "ioConfig" : {
      "type" : "hadoop",
      "inputSpec" : {
        "type" : "static",
        "paths" : "/test-data/druid/wikiticker-2015-09-12-sampled.json.gz"
      }
    },
    "tuningConfig" : {
      "type" : "hadoop",
      "partitionsSpec" : {
        "type" : "hashed",
        "targetPartitionSize" : 5000000
      },
      "forceExtendableShardSpecs" : true,
      "jobProperties" : {
        "fs.default.name" : "hdfs://master:8020",
        "fs.defaultFS" : "hdfs://master:8020/",
        "dfs.datanode.address" : "master",
        "dfs.client.use.datanode.hostname" : "true",
        "dfs.datanode.use.datanode.hostname" : "true",
        "yarn.resourcemanager.hostname" : "master",
        "yarn.nodemanager.vmem-check-enabled" : "false",
        "mapreduce.map.java.opts" : "-Duser.timezone=UTC -Dfile.encoding=UTF-8",
        "mapreduce.job.user.classpath.first" : "true",
        "mapreduce.reduce.java.opts" : "-Duser.timezone=UTC -Dfile.encoding=UTF-8",
        "mapreduce.map.memory.mb" : 1024,
        "mapreduce.reduce.memory.mb" : 1024
      }
    }
  },
  "hadoopDependencyCoordinates": ["org.apache.hadoop:hadoop-client:2.8.5"]
}

这里需要注意"hadoopDependencyCoordinates": ["org.apache.hadoop:hadoop-client:2.8.5"]这项配置。这里的配置需要跟随druid自带的hadoop-dependencies版本,比如这里是${DRUID_HOME}/hadoop-dependencies/hadoop-client/2.8.5/。但是这里还需要注意hadoop版本和该版本是否一致,如果不至于是会报错的。这个时候最好的方式是将druid版本作调整。

b. 执行命令

curl -XPOST -H'Content-Type: application/json' -d @quickstart/tutorial/my-wikipedia-index-hadoop.json http://master:8081/druid/indexer/v1/task
posted @ 2020-09-27 16:20  技术即艺术  阅读(925)  评论(0编辑  收藏  举报