利用SparkSQL(java版)将离线数据或实时流数据写入hive的用法及坑点
1. 通常利用SparkSQL将离线或实时流数据的SparkRDD数据写入Hive,一般有两种方法。第一种是利用org.apache.spark.sql.types.StructType和org.apache.spark.sql.types.DataTypes来映射拆分RDD的值;第二种方法是利用rdd和Java bean来反射的机制。下面对两种方法做代码举例
2. 利用org.apache.spark.sql.types.StructType和org.apache.spark.sql.types.DataTypes来映射拆分RDD的值
JavaRDD<Row> resultRdd = rdd.map(new Function<String[], Row>() {
@Override
public Row call(String[] line) throws Exception {
if (line != null && line.length > 0) {
return helper.createRow(line);
}
return null;
}
});
StructType structType = helper.createSchame();
Dataset<Row> dataFrame = session.createDataFrame(resultRdd, structType);
DataFrameWriter<Row> writer = dataFrame.coalesce(1).write().format(TableHelperInter.TABLE_FORMAT_TYPE).mode(SaveMode.Append);
String tableName = hiveDataBaseName + "." + helper.getTableName();
writer.insertInto(tableName);
这种方法的有点是写入简单,不必去考虑字段映射有误,但缺点是需要去写一个TableHelperInter,而且这种方式对字段的类型要求严格,在做字段类型和字段校验时比对时一旦字段过多会及其复杂,所以不推崇这种写法
3. 利用rdd和Java bean来反射
来一个完整的程序
public class SparkSQLTest {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("yarn").setAppName("SparkSQL_test");
JavaSparkContext sc = new JavaSparkContext(conf);
String line = "1102,jason,20,male,15927384023,developer,col7,col8,col9,col10,col11,col12,col13,col14,col15,col16,col17,col18,col19,col20";
String line2 = "1103,jason1,21,male,15927352023,developer1,col7,col8,col9,col10,col11,col12,col13,col14,col15,col16,col17,col18,col19,col20";
List<String> list = new ArrayList<String>();
list.add(line);
list.add(line2);
JavaRDD<String> rdd = sc.parallelize(list);
JavaRDD<Person> rddResult = rdd.map(new Function<String, Person>() {
@Override
public Person call(String s) throws Exception {
String[] message = s.split(",");
Person person = new Person();
person.setNo(message[0]);
person.setName(message[1]);
person.setAge(message[2]);
person.setGender(message[3]);
person.setPhone(message[4]);
person.setJob(message[5]);
person.setCol7(message[6]);
person.setCol8(message[7]);
person.setCol9(message[8]);
person.setCol10(message[9]);
person.setCol11(message[10]);
person.setCol12(message[11]);
person.setCol13(message[12]);
person.setCol14(message[13]);
person.setCol15(message[14]);
person.setCol16(message[15]);
person.setCol17(message[16]);
person.setCol18(message[17]);
person.setCol19(message[18]);
person.setCol20(message[19]);
person.setCreate_time_p(DateTimeFormatter.ofPattern("yyyyMMdd").format(LocalDate.now()));
return person;
}
});
//这行代码必须在实例SparkSession不然会出错
SparkSession.clearDefaultSession();
SparkSession session = SparkSession.builder()
.config("hive.metastore.uris", "localhost:9083")
.config("spark.sql.warehouse.dir", "/apps/hive/warehouse")
.config("hive.exec.dynamic.partition", true)
.config("spark.sql.sources.partitionColumnTypeInference.enabled", false)
.config("hive.exec.dynamic.partition.mode", "nonstrict")
.enableHiveSupport()
.getOrCreate();
Dataset dataset = session.createDataFrame(rddResult,Person.class);
dataset.registerTempTable("person_temp_table");
session.sql("insert into qwrenzixing.person_table20 partition (create_time_p="+DateTimeFormatter.ofPattern("yyyyMMdd")
.format(LocalDate.now())+") select no,name,age,gender,phone,job,col7,col8,col9,col10,col11,col12,col13,col14,col15,col16,col17,col18,col19,col20 from person_temp_table");
}
}
这种方法比较简洁,为了避免去做繁琐的字段比对和校验。可以将字段类型以string写入hive。同时通过SparkSession操作SQL的方法是spark2.0后的。这里是将dataset写成一张临时表,再将临时表的值查询出来insert into到hive表中。但将DataSet通过SparkSQL写成一张临时表的操作,Spark原生提供了四个关于这种操作API
dataset.registerTempTable("temp_table");
dataset.createGlobalTempView("temp_table");
dataset.createOrReplaceTempView("temp_table");
dataset.createTempView("temp_table");
4. 关于这四个将DataSet写成一张临时表的作用和坑点
1>. dataset.registerTempTable("temp_table")
这个方法建议在离线,批处理中使用,在实时流式计算中会导致后续写入hive值与字段不匹配乱序的问题
2>. dataset.createGlobalTempView("temp_table")
这个方法是创建一个全局临时表,意思就是别的spark-submit也可以用,这种场景很少,而且无法用在实时流式计算中,因为创建一次表后不能再创建会包表已经存在的错误
3>. dataset.createOrReplaceTempView("temp_table");
这个其实比较好理解,如果存在就覆盖
4>. dataset.createTempView("temp_table");
这个方法当spark程序没有结束时不能重复创建
这里的创建临时表在spark程序结束后临时表不存在,所以spark streaming程序要特别注意用法
5. 关于Spark SQL的一个坑点
在mysql中insert into有两种方式
INSERT INTO table_name VALUES (value1, value2,....)
INSERT INTO table_name (column1, column2,...) VALUES (value1, value2,....)
要注意第二种写法在SparkSQL会报错,SparkSQL不支持这种写法,只支持第一种写法。这个是为什么其实也很好理解,每个人想法不一样。第一次使用要避免这个坑点
最后附上我在利用SparkSQL将kafka数据写入hive的重要环节的代码:
String tableName = hiveDataBaseName + ".test_data";
Dataset dataFrame = session.createDataFrame(resultRdd, SJGJEntity.class);
// createOrReplaceTempView API方式将数据写入hive 不存在值与字段名错乱的问题
dataFrame.createOrReplaceTempView("temp_table");
session.sql("insert into " + tableName + " partition(create_time_p=" + DateTimeFormatter.ofPattern("yyyyMMdd").format(LocalDate.now())
+ ") select base_name,base_num,serviceCode,phoneno,called_phoneno,call_time,call_longth,lac,ci,xpoint,ypoint,imei,imsi,insert_time,call_address," + "source_table,mark_type,companyId,type,createKafkaTime from temp_table");