显微光场的3D重建过程

我们把3D物体矩阵记为G,具有(x,y,z)三个维度,把PSF矩阵记为H,把光场照片记为F。

那么,我们都知道成像实际上是一个卷积过程,所以F=H*G。

而对于光场成像,我们将它考虑为一个叠层(Ptychography)投影成像的过程,相对应的,重建也就是逐层反投影的过程。

即:

1.成像:G按照轴向(Z方向)分层,光场图像是G的每一层投影的和。每一层的投影,是这一层G(x,y,z0)和这一层对应的PSF的卷积。

可能不够严谨,但为了便于理解,可以写成:

F0=H(z0)*G(x,y,z0)

F1=H(z1)*G(x,y,z1)

F2=H(z2)*G(x,y,z2)

......

F=F1+F2+F3......

2.重建:光场图像逐层反投影,得到原3D图像。投影是F=H*G,反投影是G=transpose(H)*F。

G(x,y,z0)=transpose(H)(z0)*F

G(x,y,z1)=transpose(H)(z1)*F

G(x,y,z2)=transpose(H)(z2)*F

......

 

但是显然一次反投影并不能够重建出真实的G,因为之前存在了信息的混叠。

所以实际的重建过程是多次的投影与反投影的迭代过程:

初始化一个G0->投影得到F0->得到F0和F的差距(error=F./F0,点除)->将此差距反投影(corr=backprojection(error))->更新G1=G0.*corr(点乘)->下一步投影与反投影,直至收敛

于是就得到了重建的Ghat

 

 

关于相空间光场,做一些解释:

PSF各个维度的含义:

(x,y,u,v,z)

x,y——sensor上pixel坐标

u,v——各频率分量,频率坐标

z——点光源的z轴位置

在相空间光场中做3D重建,也是叠层成像,不同的是,在一次迭代下,各个频率分量单独处理,逐个用于更新重建体积。

 

 

参考文献:

1.Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope[J]. Optics express, 2013, 21(21): 25418-25439.

2.Lu Z, Wu J, Qiao H, et al. Phase-space deconvolution for light field microscopy[J]. Optics express, 2019, 27(13): 18131-18145.

posted @ 2020-06-05 09:50  范家旗旗  阅读(664)  评论(1编辑  收藏  举报