09 2014 档案

摘要:ILSVRC 2014结束一段时间了。从下面的表格来看,基本都是RCNN的路子,但是这些牛队都做了改进。自己和人家比差的太远啊,努力。teamresultsSpotlights and improveGoogLeNet0.439329(6 m)0.38(1m)Rcnn1. Increase size... 阅读全文
posted @ 2014-09-28 14:22 deeplearner_allen 阅读(2335) 评论(0) 推荐(0) 编辑
摘要:from:https://developer.nvidia.com/mvapichMVAPICH2 is an open source implementation of Message Passing Interface (MPI) that delivers the best performan... 阅读全文
posted @ 2014-09-24 09:58 deeplearner_allen 阅读(934) 评论(0) 推荐(0) 编辑
摘要:http://zeromq.orgZeroMQ\zero-em-queue\, \ØMQ\: Ø Connect your code in any language, on any platform. Ø Carries messages across inproc, IPC, TCP, TPI... 阅读全文
posted @ 2014-09-19 21:56 deeplearner_allen 阅读(507) 评论(0) 推荐(0) 编辑
摘要:想用SVM代替softmax,损失函数有了,可是最后一层没有实现啊。好吧,今天得到启发,我觉得我要笨死了……https://github.com/s9xie/DSN/tree/experiment-no-polishhttp://vcl.ucsd.edu/~sxie/2014/09/12/dsn-p... 阅读全文
posted @ 2014-09-18 17:55 deeplearner_allen 阅读(255) 评论(0) 推荐(0) 编辑
摘要:How good are detection proposals, really?J. Hosang, R. Benenson,B. SchieleOral at BMVC 2014http://rodrigob.github.io/https://www.mpi-inf.mpg.de/depart... 阅读全文
posted @ 2014-09-17 15:56 deeplearner_allen 阅读(972) 评论(2) 推荐(0) 编辑
摘要:Very Deep Convolutional Networks for Large-Scale Image RecognitionKaren Simonyan,Andrew ZissermanIn this work we investigate the effect of the convolu... 阅读全文
posted @ 2014-09-17 14:04 deeplearner_allen 阅读(1113) 评论(0) 推荐(0) 编辑
摘要:P. Felzenszwalb, R. Girshick, D. McAllester, D. RamananObject Detection with Discriminatively Trained Part Based ModelsIEEE Transactions on Pattern An... 阅读全文
posted @ 2014-09-17 10:05 deeplearner_allen 阅读(793) 评论(0) 推荐(0) 编辑
摘要:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual RecognitionKaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian SunThe13th European Conf... 阅读全文
posted @ 2014-09-16 15:45 deeplearner_allen 阅读(5627) 评论(2) 推荐(0) 编辑
摘要:二类分类器svm 的loss function 是 hinge loss:L(y)=max(0,1-t*y),t=+1 or -1,是标签属性. 对线性svm,y=w*x+b,其中w为权重,b为偏置项,在实际优化中,w,b是待优化的未知,通过优化损失函数,使得loss function最小,得到优化... 阅读全文
posted @ 2014-09-15 12:47 deeplearner_allen 阅读(801) 评论(0) 推荐(0) 编辑

点击右上角即可分享
微信分享提示