classifier

  1. a positive example classified as positive. This is a true positive.
  2. a positive example misclassified as negative. This is a false negative.
  3. a negative example classified as negative. This is a true negative.
  4. a negative example misclassified as positive. This is a false positive.

 

Matrix with true and hypothesized classes

 

 Accuracy

 

Here are some metrics you’ll likely come across:

    • true positive rate = TP/(TP+FN) = 1 − false negative rate
    • false positive rate = FP/(FP+TN) = 1 − true negative rate
    • sensitivity = true positive rate
    • specificity = true negative rate
    • positive predictive value = TP/(TP+FP)
    • recall = TP / (TP+FN) = true positive rate
    • precision = TP / (TP+FP)
    • F-score is the harmonic mean of precision and recall: 
      F-measure
    • G-score is the geometric mean of precision and recall: 
      G-measure

 

 

 

from: http://svds.com/post/basics-classifier-evaluation-part-1

 

posted @   deeplearner_allen  阅读(380)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示