classifier
- a positive example classified as positive. This is a true positive.
- a positive example misclassified as negative. This is a false negative.
- a negative example classified as negative. This is a true negative.
- a negative example misclassified as positive. This is a false positive.
Here are some metrics you’ll likely come across:
- true positive rate = TP/(TP+FN) = 1 − false negative rate
- false positive rate = FP/(FP+TN) = 1 − true negative rate
- sensitivity = true positive rate
- specificity = true negative rate
- positive predictive value = TP/(TP+FP)
- recall = TP / (TP+FN) = true positive rate
- precision = TP / (TP+FP)
- F-score is the harmonic mean of precision and recall:
- G-score is the geometric mean of precision and recall:
from: http://svds.com/post/basics-classifier-evaluation-part-1
Sophie的世界,转载请注明出处,谢谢。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人