caffe的输入

决定将caffe分为几个部分进行总结,首先是第一部分,输入数据以及输入层。

首先从输入数据对BP的影响开始介绍。

sgd的随机性

由于是sgd,因此样本一定要shuffle。BP中说到,样本选择遵循俩个原则:1.shuffle,让样本囊括所有类,2. 使得误差大的样本多出现,而误差小的少出现。

首先说一说第一个:

随机性,这个在caffe中都是怎么体现的呢?先说说caffe中的输入格式吧,leveldb, image原始数据,hdf5,lmdb。其中对应的类有data_layer, image_data_layer,windows_data_layer,hdf5_data_layer。使用leveldb作为输入的层,在打leveldb时已经shuffle过了,一定要选择要随机打leveldb,否则模型无法训练的。而用image原始数据作为输入的层,在读入数据列表后,image_Data_layer会先进行整体shuffle,然后再进行训练。而window_data_layer,首先读取数据列表,然后在训练过程中,读取数据时,每次读的数据时随机的。而hdf5和lmdb,我没有打过hdf5,lmdb,等我调查后再补充,从代码来看,应该在打hdf5时就要随机的。

第二点呢,这个其实在caffe里我没有看到相关的应用,我想可能主要是因为caffe主要是针对大数据训练的(咳咳,现在说到大数据我就别扭,连什么什么会都开始什么都冠名“大”了,太俗了)。在这种情况下,想要记录每一个训练样本的误差,是基本上无法实现的,而且当数据量大了,也不需要去在乎这个了。但是,这个训练策略是值得一提的,在SVM的训练中,用到的是hard negative minning,就是这个原理,或者差不多吧。在SVM的训练过程中,每次都是选择那些分错的从新训练,而分对的不需要再进行。具体理论保证,我好想又忘记了……

 

本小题未完待续,最近系统看关于fp,bp的文章,efficient bp我第三次看,还是白板一样,全是新知识扑面而来。

 

posted @   deeplearner_allen  阅读(2436)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· winform 绘制太阳,地球,月球 运作规律
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
点击右上角即可分享
微信分享提示