opencv colors
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | """ 在利用python进行画图时,我们可能常常用的颜色就是'k'黑色,'r'红色,'b'蓝色,'g'绿色等,这些颜色分别代表常见的 几种颜色。但是当我们画图比较多时,颜色如何分配呢?可以参考下面的这些方案。 这样在画图时,可以选用的就很多,当然在应用时,如果想让你的图更有对比性,可以将对比性差的 去掉不用。 下面的代码来自matplotlib官方。 ==================== List of named colors ==================== This plots a list of the named colors supported in matplotlib. Note that :ref:`xkcd colors <xkcd-colors>` are supported as well, but are not listed here for brevity. For more information on colors in matplotlib see * the :doc:`/tutorials/colors/colors` tutorial; * the `matplotlib.colors` API; * the :doc:`/gallery/color/color_demo`. """ from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import matplotlib.colors as mcolors def plot_colortable(colors, title, sort_colors = True , emptycols = 0 ): cell_width = 212 cell_height = 22 swatch_width = 48 margin = 12 topmargin = 40 # Sort colors by hue, saturation, value and name. if sort_colors is True : by_hsv = sorted (( tuple (mcolors.rgb_to_hsv(mcolors.to_rgb(color))), name) for name, color in colors.items()) names = [name for hsv, name in by_hsv] else : names = list (colors) n = len (names) print (n) print (names) ncols = 4 - emptycols nrows = n / / ncols + int (n % ncols > 0 ) width = cell_width * 4 + 2 * margin height = cell_height * nrows + margin + topmargin dpi = 72 fig, ax = plt.subplots(figsize = (width / dpi, height / dpi), dpi = dpi) fig.subplots_adjust(margin / width, margin / height, (width - margin) / width, (height - topmargin) / height) ax.set_xlim( 0 , cell_width * 4 ) ax.set_ylim(cell_height * (nrows - 0.5 ), - cell_height / 2. ) ax.yaxis.set_visible( False ) ax.xaxis.set_visible( False ) ax.set_axis_off() ax.set_title(title, fontsize = 24 , loc = "left" , pad = 10 ) for i, name in enumerate (names): row = i % nrows col = i / / nrows y = row * cell_height swatch_start_x = cell_width * col text_pos_x = cell_width * col + swatch_width + 7 ax.text(text_pos_x, y, name, fontsize = 14 , horizontalalignment = 'left' , verticalalignment = 'center' ) ax.add_patch( Rectangle(xy = (swatch_start_x, y - 9 ), width = swatch_width, height = 18 , facecolor = colors[name], edgecolor = '0.7' ) ) return fig plot_colortable(mcolors.BASE_COLORS, "Base Colors" , sort_colors = False , emptycols = 1 ) plot_colortable(mcolors.TABLEAU_COLORS, "Tableau Palette" , sort_colors = False , emptycols = 2 ) # sphinx_gallery_thumbnail_number = 3 plot_colortable(mcolors.CSS4_COLORS, "CSS Colors" ) # Optionally plot the XKCD colors (Caution: will produce large figure) # xkcd_fig = plot_colortable(mcolors.XKCD_COLORS, "XKCD Colors") # xkcd_fig.savefig("XKCD_Colors.png") plt.show() ############################################################################# # # .. admonition:: References # # The use of the following functions, methods, classes and modules is shown # in this example: # # - `matplotlib.colors` # - `matplotlib.colors.rgb_to_hsv` # - `matplotlib.colors.to_rgba` # - `matplotlib.figure.Figure.get_size_inches` # - `matplotlib.figure.Figure.subplots_adjust` # - `matplotlib.axes.Axes.text` # - `matplotlib.patches.Rectangle` |
Sophie的世界,转载请注明出处,谢谢。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!