HDU1098 Ignatius's puzzle
Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print "no".
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string "no",if you can't find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11 100 9999
Sample Output
22 no 43
解题思路:题意比较简单,就是输入一个数k,求最小的数a使得f(x)对于任意的x都能被65整除;
要让f(x)被65整除,可以把f(x)看作是13和5的倍数:现考虑f(x)是5的倍数,则有(13*x^5+k*a*x)%5==0 <=> x(13*x^4+k*a)%5==0,由于x取任意值,当x不能被5整除时,
即x与5互素,则13*x^4+k*a要能被5整除,由费马小定理,得(x^4) mod 5== 1,所以有(13+k*a)%5==0,所以(k*a)%5==2,同理(k*a)%13==8,可知如果k能被5整除或者能被
8整除时均找不到对应的a值,所以直接输出no,又因为先考虑(k*a)%5==2中:k%5==1、2、3、4,然后枚举a,只要满足(k*a)%13==8,即可输出a值。大致思路就是这样啦;
代码如下:
#include <cstdio> int main(){ int tab[5]={0,2,1,4,3}; int k,a; while(~scanf("%d",&k)){ if(k%5==0||k%13==0){ printf("no\n"); continue; } for(a=tab[k%5];;a+=5){ if(k*a%13==8){ printf("%d\n",a); break; } } } return 0; }