Linux reset子系统
文章代码分析基于linux-5.19.13,架构基于aarch64(ARM64)。
1. 前言
复杂IC内部有很多具有独立功能的硬件模块,例如CPU cores、GPU cores、USB控制器、MMC控制器、等等,出于功耗、稳定性等方面的考虑,有些IC在内部为这些硬件模块设计了复位信号(reset signals),软件可通过寄存器(一般1个bit控制1个硬件)控制这些硬件模块的复位状态。
Linux kernel为了方便设备驱动的编写,抽象出一个简单的软件框架----reset framework,为reset的provider提供统一的reset资源管理手段,并为reset的consumer(各个硬件模块)提供便捷、统一的复位控制API。
2. 前言
reset子系统也分为了consumer和provider,结构体关系如下:
3. consumer
对于一个具体的硬件模块,它的要求很简单:复位我的硬件模块,而不必关注具体复位的手段(例如控制哪个寄存器的哪个bit位,等等)。
Linux kernel基于device tree提供了对应的reset framework:
-
首先,提供描述系统中reset资源的方法(参考provider的介绍),这样consumer可以基于这种描述,在自己的dts node中引用所需的reset信号。
-
然后,consumer设备在自己的dts node中使用“resets”、“reset-names”等关键字声明所需的reset的资源,例如("resets"字段的具体格式由reset provider决定):
device { resets = <&rst 20>; reset-names = "reset"; }; This represents a device with a single reset signal named "reset". bus { resets = <&rst 10> <&rst 11> <&rst 12> <&rst 11>; reset-names = "i2s1", "i2s2", "dma", "mixer"; }; This represents a bus that controls the reset signal of each of four sub- ordinate devices. Consider for example a bus that fails to operate unless no child device has reset asserted.
- 最后,consumer driver在需要的时候,可以调用下面的API复位自己(具体可参考"include\linux\reset.h"):
- 只有一个reset信号的话,可以使用最简单的device_reset API
static inline int __must_check device_reset(struct device *dev)
- 如果需要更为复杂的控制(例如有多个reset信号、需要控制处于reset状态的长度的等),可以使用稍微复杂的API
/* 通过reset_control_get或者devm_reset_control_get获得reset句柄 */ struct reset_control *reset_control_get(struct device *dev, const char *id); struct reset_control *devm_reset_control_get(struct device *dev, const char *id); /* 通过reset_control_put释放reset句柄 */ void reset_control_put(struct reset_control *rstc); /* 通过reset_control_reset进行复位,或者通过reset_control_assert使设备处于复位生效状态,通过reset_control_deassert使复位失效 */ int reset_control_reset(struct reset_control *rstc); /先复位,延迟一会,然后解复位 int reset_control_assert(struct reset_control *rstc); //复位 int reset_control_deassert(struct reset_control *rstc);//解复位
4. provider
kernel为reset provider提供的API位于"include/linux/reset-controller.h"中,很简单,无非就是:创建并填充reset controller设备(struct reset_controller_dev),并调用相应的接口:
- reset_controller_register //注册reset_controller
- reset_controller_unregister //注销reset_controller
reset controller的抽象也很简单:
/** * struct reset_controller_dev - reset controller entity that might * provide multiple reset controls * @ops: a pointer to device specific struct reset_control_ops * @owner: kernel module of the reset controller driver * @list: internal list of reset controller devices * @reset_control_head: head of internal list of requested reset controls * @dev: corresponding driver model device struct * @of_node: corresponding device tree node as phandle target * @of_reset_n_cells: number of cells in reset line specifiers * @of_xlate: translation function to translate from specifier as found in the * device tree to id as given to the reset control ops, defaults * to :c:func:`of_reset_simple_xlate`. * @nr_resets: number of reset controls in this reset controller device */ struct reset_controller_dev { const struct reset_control_ops *ops;//ops提供reset操作的实现,基本上是reset provider的所有工作量。 struct module *owner; struct list_head list;////全局链表,复位控制器注册后挂载到全局链表 struct list_head reset_control_head;////各个模块复位的链表头 struct device *dev; struct device_node *of_node; int of_reset_n_cells;////用于解析consumer device dts node中的“resets = <>; ”节点,指示dts中引用时,需要几个参数 int (*of_xlate)(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec);//用于解析consumer device dts node中的“resets = <>; ”节点 unsigned int nr_resets;//该reset controller所控制的reset信号的个数 };
struct reset_control_ops也比较单纯,如下:
/** * struct reset_control_ops - reset controller driver callbacks * * @reset: for self-deasserting resets, does all necessary * things to reset the device * @assert: manually assert the reset line, if supported * @deassert: manually deassert the reset line, if supported * @status: return the status of the reset line, if supported */ struct reset_control_ops { int (*reset)(struct reset_controller_dev *rcdev, unsigned long id); //控制设备完成一次完整的复位过程 int (*assert)(struct reset_controller_dev *rcdev, unsigned long id); //控制设备reset状态的生效 int (*deassert)(struct reset_controller_dev *rcdev, unsigned long id);//控制设备reset状态的失效。 int (*status)(struct reset_controller_dev *rcdev, unsigned long id); //复位状态查询 };
5. reset驱动的设备树描述总结
5.1 对于provider
reset:reset-controller{ compatible = "xx,xx-reset"; reg = <0x0 0x30390000 0x0 0x10000>; #reset-cells = <1>; };
上述是一个reset控制器的节点,0x30390000 是寄存器基址,0x1000是映射大小。"#reset-cells"代表引用该reset时需要的cells个数。
5.2 对于consumer
例如,#reset-cells = <1>; 则正确引用为:
mmc:mmc@0x12345678{ ...... resets = <&reset 0>;//0代表reset设备id,id是自定义的,但是不能超过reset驱动中指定的设备个数 ...... };
6. 开源reset驱动实例
6.1 实例1(比较容易理解)
设备树: arch/arm/boot/dts/imx7d.dtsi
pcie: pcie@0x33800000 { compatible = "fsl,imx7d-pcie", "snps,dw-pcie"; .... resets = <&src IMX7_RESET_PCIEPHY>, <&src IMX7_RESET_PCIE_CTRL_APPS_EN>; reset-names = "pciephy", "apps"; status = "disabled"; };
驱动代码: drivers/reset/reset-imx7.c
... struct imx7_src { struct reset_controller_dev rcdev; struct regmap *regmap; }; enum imx7_src_registers { SRC_A7RCR0 = 0x0004, SRC_M4RCR = 0x000c, SRC_ERCR = 0x0014, SRC_HSICPHY_RCR = 0x001c, SRC_USBOPHY1_RCR = 0x0020, SRC_USBOPHY2_RCR = 0x0024, SRC_MIPIPHY_RCR = 0x0028, SRC_PCIEPHY_RCR = 0x002c, SRC_DDRC_RCR = 0x1000, }; struct imx7_src_signal { unsigned int offset, bit; }; static const struct imx7_src_signal imx7_src_signals[IMX7_RESET_NUM] = { [IMX7_RESET_A7_CORE_POR_RESET0] = { SRC_A7RCR0, BIT(0) }, [IMX7_RESET_A7_CORE_POR_RESET1] = { SRC_A7RCR0, BIT(1) }, [IMX7_RESET_A7_CORE_RESET0] = { SRC_A7RCR0, BIT(4) }, [IMX7_RESET_A7_CORE_RESET1] = { SRC_A7RCR0, BIT(5) }, [IMX7_RESET_A7_DBG_RESET0] = { SRC_A7RCR0, BIT(8) }, [IMX7_RESET_A7_DBG_RESET1] = { SRC_A7RCR0, BIT(9) }, ... }; static struct imx7_src *to_imx7_src(struct reset_controller_dev *rcdev) { return container_of(rcdev, struct imx7_src, rcdev); } static int imx7_reset_set(struct reset_controller_dev *rcdev, unsigned long id, bool assert) { struct imx7_src *imx7src = to_imx7_src(rcdev); const struct imx7_src_signal *signal = &imx7_src_signals[id]; unsigned int value = assert ? signal->bit : 0; switch (id) { case IMX7_RESET_PCIEPHY: /* * wait for more than 10us to release phy g_rst and * btnrst */ if (!assert) udelay(10); break; case IMX7_RESET_PCIE_CTRL_APPS_EN: value = (assert) ? 0 : signal->bit; break; } return regmap_update_bits(imx7src->regmap, signal->offset, signal->bit, value); } static int imx7_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { return imx7_reset_set(rcdev, id, true); } static int imx7_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { return imx7_reset_set(rcdev, id, false); } static const struct reset_control_ops imx7_reset_ops = { .assert = imx7_reset_assert, .deassert = imx7_reset_deassert, }; static int imx7_reset_probe(struct platform_device *pdev) { struct imx7_src *imx7src; struct device *dev = &pdev->dev; struct regmap_config config = { .name = "src" }; imx7src = devm_kzalloc(dev, sizeof(*imx7src), GFP_KERNEL); if (!imx7src) return -ENOMEM; imx7src->regmap = syscon_node_to_regmap(dev->of_node); if (IS_ERR(imx7src->regmap)) { dev_err(dev, "Unable to get imx7-src regmap"); return PTR_ERR(imx7src->regmap); } regmap_attach_dev(dev, imx7src->regmap, &config); imx7src->rcdev.owner = THIS_MODULE; imx7src->rcdev.nr_resets = IMX7_RESET_NUM; imx7src->rcdev.ops = &imx7_reset_ops; imx7src->rcdev.of_node = dev->of_node; return devm_reset_controller_register(dev, &imx7src->rcdev); } static const struct of_device_id imx7_reset_dt_ids[] = { { .compatible = "fsl,imx7d-src", }, { /* sentinel */ }, }; static struct platform_driver imx7_reset_driver = { .probe = imx7_reset_probe, .driver = { .name = KBUILD_MODNAME, .of_match_table = imx7_reset_dt_ids, }, }; builtin_platform_driver(imx7_reset_driver);
6.2 实例2(在gpio子系统中嵌套reset子系统)
设备树: arc/arm64/boot/dts/myzr/myimx8mm.dts
&pcie0{ pinctrl-names = "default"; pinctrl-0 = <&pinctrl_i2c4_pcieclk>, <&pinctrl_gpio1_pciendis>, <&pinctrl_sd2_pciewake>, <&pinctrl_sai2_pcienrst>; disable-gpio = <&gpio1 5 GPIO_ACTIVE_LOW>; reset-gpio = <&gpio4 21 GPIO_ACTIVE_LOW>; ext_osc = <1>; status = "okay"; };
驱动代码: drivers/reset/gpio-reset.c
... struct gpio_reset_data { struct reset_controller_dev rcdev; unsigned int gpio; bool active_low; s32 delay_us; s32 post_delay_ms; }; static void gpio_reset_set(struct reset_controller_dev *rcdev, int asserted) { struct gpio_reset_data *drvdata = container_of(rcdev, struct gpio_reset_data, rcdev); int value = asserted; if (drvdata->active_low) value = !value; gpio_set_value_cansleep(drvdata->gpio, value); } static int gpio_reset(struct reset_controller_dev *rcdev, unsigned long id) { struct gpio_reset_data *drvdata = container_of(rcdev, struct gpio_reset_data, rcdev); if (drvdata->delay_us < 0) return -ENOSYS; gpio_reset_set(rcdev, 1); udelay(drvdata->delay_us); gpio_reset_set(rcdev, 0); if (drvdata->post_delay_ms < 0) return 0; msleep(drvdata->post_delay_ms); return 0; } static int gpio_reset_assert(struct reset_controller_dev *rcdev, unsigned long id) { gpio_reset_set(rcdev, 1); return 0; } static int gpio_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { gpio_reset_set(rcdev, 0); return 0; } static struct reset_control_ops gpio_reset_ops = { .reset = gpio_reset, .assert = gpio_reset_assert, .deassert = gpio_reset_deassert, }; static int of_gpio_reset_xlate(struct reset_controller_dev *rcdev, const struct of_phandle_args *reset_spec) { if (WARN_ON(reset_spec->args_count != 0)) return -EINVAL; return 0; } static int gpio_reset_probe(struct platform_device *pdev) { ... drvdata = devm_kzalloc(&pdev->dev, sizeof(*drvdata), GFP_KERNEL); ... drvdata->rcdev.of_node = np; drvdata->rcdev.owner = THIS_MODULE; drvdata->rcdev.nr_resets = 1; ////该reset controller所控制的reset信号的个数 drvdata->rcdev.ops = &gpio_reset_ops; //ops提供reset操作的实现。 drvdata->rcdev.of_xlate = of_gpio_reset_xlate; reset_controller_register(&drvdata->rcdev); //注册reset controller return 0; } static int gpio_reset_remove(struct platform_device *pdev) { struct gpio_reset_data *drvdata = platform_get_drvdata(pdev); reset_controller_unregister(&drvdata->rcdev); return 0; } static struct of_device_id gpio_reset_dt_ids[] = { { .compatible = "gpio-reset" }, { } }; #ifdef CONFIG_PM_SLEEP static int gpio_reset_suspend(struct device *dev) { pinctrl_pm_select_sleep_state(dev); return 0; } static int gpio_reset_resume(struct device *dev) { pinctrl_pm_select_default_state(dev); return 0; } #endif static const struct dev_pm_ops gpio_reset_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(gpio_reset_suspend, gpio_reset_resume) }; static struct platform_driver gpio_reset_driver = { .probe = gpio_reset_probe, .remove = gpio_reset_remove, .driver = { .name = "gpio-reset", .owner = THIS_MODULE, .of_match_table = of_match_ptr(gpio_reset_dt_ids), .pm = &gpio_reset_pm_ops, }, }; static int __init gpio_reset_init(void) { return platform_driver_register(&gpio_reset_driver); } arch_initcall(gpio_reset_init); static void __exit gpio_reset_exit(void) { platform_driver_unregister(&gpio_reset_driver); } ...
7. reset驱动的实质
操作soc对应的reset寄存器,以实现内核IP的复位,或者操作gpio管脚的电平,间接复位接到该pin脚的从设备。
参考
[1] Documentation/devicetree/bindings/reset/reset.txt
[2] Linux reset framework
[2] Linux reset子系统及驱动实例
本文来自博客园,作者:BSP-路人甲,转载请注明原文链接:https://www.cnblogs.com/jianhua1992/p/17396492.html,并保留此段声明,否则保留追究法律责任的权利。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理