nlp SVD降维
2022-04-05 14:36 jym蒟蒻 阅读(122) 评论(0) 编辑 收藏 举报基于SVD的降维优化
向量降维:尽量保留数据“重要信息”的基础上减少向量维度。可以发现重要的轴(数据分布广的轴),将二维数据 表示为一维数据,用新轴上的投影值来表示各个数据点的值,示意图如下。
稀疏矩阵和密集矩阵转换:大多数元素为0的矩阵称为稀疏矩阵,从稀疏矩阵中找出重要的轴,用更少的维度对其进行重新表示。结果,稀疏矩阵就会被转化为大多数元素均不为0的密集矩阵。这个密集矩阵就是我们想要的单词的分布式表示。
奇异值分解(Singular Value Decomposition,SVD):任意的矩阵X分解为U、S、V,3个矩阵的乘积,其中U和V是列向量彼此正交的正交矩阵,S是除了对角线元素以外其余元素均为0的对角矩阵。
关于SVD是怎么回事,从代码中分析:
代码中使用 NumPy 的 linalg 模块中的 svd 方法,如下。
U, S, V = np.linalg.svd(W)
我们输出C、W、U、S、V,如下所示,可以看出,C是共现矩阵、W是PPMI矩阵。可以看到S矩阵是降序排列的。
[0 1 0 0 0 0 0]
[1 0 1 0 1 1 0]
[0 1 0 1 0 0 0]
[0 0 1 0 1 0 0]
[0 1 0 1 0 0 0]
[0 1 0 0 0 0 1]
[0 0 0 0 0 1 0]
[[0. 1.807 0. 0. 0. 0. 0. ]
[1.807 0. 0.807 0. 0.807 0.807 0. ]
[0. 0.807 0. 1.807 0. 0. 0. ]
[0. 0. 1.807 0. 1.807 0. 0. ]
[0. 0.807 0. 1.807 0. 0. 0. ]
[0. 0.807 0. 0. 0. 0. 2.807]
[0. 0. 0. 0. 0. 2.807 0. ]]
[[-3.409e-01 -1.110e-16 -3.886e-16 -1.205e-01 0.000e+00 9.323e-01 2.664e-16]
[ 0.000e+00 -5.976e-01 1.802e-01 0.000e+00 -7.812e-01 0.000e+00 0.000e+00]
[-4.363e-01 -4.241e-17 -2.172e-16 -5.088e-01 -1.767e-17 -2.253e-01 -7.071e-01]
[-2.614e-16 -4.978e-01 6.804e-01 -4.382e-17 5.378e-01 9.951e-17 -3.521e-17]
[-4.363e-01 -3.229e-17 -1.654e-16 -5.088e-01 -1.345e-17 -2.253e-01 7.071e-01]
[-7.092e-01 -3.229e-17 -1.654e-16 6.839e-01 -1.345e-17 -1.710e-01 9.095e-17]
[ 3.056e-16 -6.285e-01 -7.103e-01 7.773e-17 3.169e-01 -2.847e-16 4.533e-17]]
[3.168e+00 3.168e+00 2.703e+00 2.703e+00 1.514e+00 1.514e+00 1.484e-16]
[[ 0.000e+00 -5.976e-01 -2.296e-16 -4.978e-01 -1.186e-16 2.145e-16 -6.285e-01]
[-3.409e-01 -1.110e-16 -4.363e-01 0.000e+00 -4.363e-01 -7.092e-01 0.000e+00]
[ 1.205e-01 -5.551e-16 5.088e-01 0.000e+00 5.088e-01 -6.839e-01 0.000e+00]
[-0.000e+00 -1.802e-01 -1.586e-16 -6.804e-01 6.344e-17 9.119e-17 7.103e-01]
[-9.323e-01 -5.551e-17 2.253e-01 0.000e+00 2.253e-01 1.710e-01 0.000e+00]
[-0.000e+00 7.812e-01 2.279e-16 -5.378e-01 3.390e-16 -2.717e-16 -3.169e-01]
[ 0.000e+00 2.632e-16 -7.071e-01 8.043e-18 7.071e-01 9.088e-17 1.831e-17]]
下面研究U、S、V矩阵究竟是什么,添加如下代码。
print("______________________")
jym = np.dot(V, U)
print(jym)
print("______________________")
jym2 = np.dot(U, V)
print(jym2)
print("______________________")
V2 = np.transpose(V)
jb = np.dot(V, V2)
print(jb)
输出如下,那就可以把U和V的性质给搞懂了。从jb = np.dot(V, V2),输出jb矩阵是单位矩阵,可知,V和U是正交矩阵。jym = np.dot(V, U),输出jym主对角线元素全为0。U和V是列向量彼此正交的,公式里面把V转置了也就是说,U的列向量和代码里的V的行向量是正交的,所以用V乘U,他们的对角元是0。
______________________
[[-6.212e-17 1.000e+00 1.015e-08 2.968e-16 -5.249e-09 1.712e-16 6.754e-17]
[ 1.000e+00 1.597e-16 3.967e-16 -2.653e-08 1.099e-16 -1.336e-08 -5.293e-09]
[ 2.653e-08 3.025e-16 -2.284e-16 -1.000e+00 4.270e-16 1.110e-08 5.760e-09]
[ 3.718e-16 -1.015e-08 -1.000e+00 1.958e-16 4.416e-10 -2.641e-16 2.132e-16]
[ 1.336e-08 1.143e-16 2.378e-16 1.110e-08 3.405e-17 -1.000e+00 -2.662e-09]
[-1.096e-17 5.249e-09 4.416e-10 -4.753e-16 -1.000e+00 -4.458e-17 8.307e-17]
[-5.293e-09 -1.657e-16 7.657e-17 -5.760e-09 -1.925e-16 2.662e-09 1.000e+00]]
______________________
[[-8.977e-18 9.539e-01 -2.775e-17 -2.497e-01 3.879e-16 7.108e-18 -1.668e-01]
[ 9.539e-01 9.667e-18 1.764e-01 0.000e+00 1.764e-01 1.670e-01 0.000e+00]
[ 4.757e-18 1.764e-01 5.000e-01 6.846e-01 -5.000e-01 3.262e-17 -1.578e-02]
[-2.497e-01 -1.105e-16 6.846e-01 1.064e-16 6.846e-01 -2.032e-02 1.016e-16]
[ 3.622e-18 1.764e-01 -5.000e-01 6.846e-01 5.000e-01 1.192e-16 -1.578e-02]
[ 3.622e-18 1.670e-01 -1.220e-16 -2.032e-02 6.079e-17 9.043e-17 9.857e-01]
[-1.668e-01 2.741e-17 -1.578e-02 -5.192e-17 -1.578e-02 9.857e-01 -4.663e-17]]
______________________
[[ 1.000e+00 6.620e-17 7.901e-18 -1.015e-08 -8.632e-18 5.249e-09 -9.431e-17]
[ 6.620e-17 1.000e+00 2.653e-08 -3.141e-18 1.336e-08 -1.414e-16 -5.293e-09]
[ 7.901e-18 2.653e-08 1.000e+00 -1.074e-17 -1.110e-08 4.054e-17 5.760e-09]
[-1.015e-08 -3.141e-18 -1.074e-17 1.000e+00 4.150e-18 -4.416e-10 1.171e-16]
[-8.632e-18 1.336e-08 -1.110e-08 4.150e-18 1.000e+00 3.792e-17 -2.662e-09]
[ 5.249e-09 -1.414e-16 4.054e-17 -4.416e-10 3.792e-17 1.000e+00 2.740e-16]
[-9.431e-17 -5.293e-09 5.760e-09 1.171e-16 -2.662e-09 2.740e-16 1.000e+00]]
SVD的直观意义是什么:
U是正交矩阵。这个正交矩阵构成了一些空间中的基轴 (基向量),可以将矩阵U作为“单词空间”。 S是对角矩阵,奇异值在对角线上降序排列,奇异值的大小也就意味着“对应的基轴”的重要性。奇异值小,对应基轴重要性就小,所以可以通过去除U矩阵中的多余的列向量来近似原始矩阵。从而把单词向量用降维后的矩阵表示。示意图如下。
稀疏向量W经过 SVD 被转化成了密集向量U。如果要对这个密集向量降维,比如把它降维到二维向量,取出U的前两个元素即可。
text = 'You say goodbye and I say hello.'
corpus, word_to_id, id_to_word = preprocess(text)
vocab_size = len(id_to_word)
C = create_co_matrix(corpus, vocab_size, window_size=1)
W = ppmi(C)
# SVD
U, S, V = np.linalg.svd(W)
np.set_printoptions(precision=3) # 有效位数为3位
for i in range(7):
print(C[i])
print(U)
# plot
for word, word_id in word_to_id.items():
plt.annotate(word, (U[word_id, 0], U[word_id, 1]))
plt.scatter(U[:,0], U[:,1], alpha=0.5)
plt.show()
输出的U:
[[-3.409e-01 -1.110e-16 -3.886e-16 -1.205e-01 0.000e+00 9.323e-01
2.664e-16]
[ 0.000e+00 -5.976e-01 1.802e-01 0.000e+00 -7.812e-01 0.000e+00
0.000e+00]
[-4.363e-01 -4.241e-17 -2.172e-16 -5.088e-01 -1.767e-17 -2.253e-01
-7.071e-01]
[-2.614e-16 -4.978e-01 6.804e-01 -4.382e-17 5.378e-01 9.951e-17
-3.521e-17]
[-4.363e-01 -3.229e-17 -1.654e-16 -5.088e-01 -1.345e-17 -2.253e-01
7.071e-01]
[-7.092e-01 -3.229e-17 -1.654e-16 6.839e-01 -1.345e-17 -1.710e-01
9.095e-17]
[ 3.056e-16 -6.285e-01 -7.103e-01 7.773e-17 3.169e-01 -2.847e-16
4.533e-17]]
用二维向量表示各个单词,并把它们画在图上,画出的图如下:goodbye 和 hello、you 和 i 位置接近,这个结果复合之前做的基于余弦相似度的结果。