机器学习 使用MNIST数据集
2022-04-05 14:07 jym蒟蒻 阅读(222) 评论(0) 编辑 收藏 举报下载MNIST数据集并使用python将数据转换成NumPy数组
- 首先来分析init_mnist函数
- 接下来继续分析load_mnist函数
- 实现数据集转换的python脚本的代码
- 显示MNIST图像并确认数据
下载MNIST数据集并将数据转换成NumPy数组的Python脚本里面最重要的就是load_mnist函数,其他项目想要调用数据集的话,就可以调用load_mnist函数,得到一个字典类型的数据,字典的值是一个Numpy数组。
这些过程是如何实现的,现在开始逐字逐句分析源码:
在load_mnist函数中第一句话是
if not os.path.exists(save_file):
init_mnist()
如果说数据没有被下载,那么就调用init_mnist()函数。
在init_mnist()函数中,可以发现调用了download_mnist()函数。
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
在download_mnist()函数中,可以看到又调用了_download(v)函数。
def download_mnist():
for v in key_file.values():
_download(v)
在_download(v)函数中,可以看出,它最重要的一句话就是urllib.request.urlretrieve,这个语句的意思就是把数据集下载到file_path路径下的文件里面。
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img':'train-images-idx3-ubyte.gz',
'train_label':'train-labels-idx1-ubyte.gz',
'test_img':'t10k-images-idx3-ubyte.gz',
'test_label':'t10k-labels-idx1-ubyte.gz'
}
然后回到download_mnist()函数,这里面调用了_convert_numpy函数
# download_mnist()函数
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
我们看 _convert_numpy函数:这函数返回一个字典数据类型,也就是键值对。这个函数里面调用了 _load_img函数。
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])
return dataset
我们看 _load_img函数,由print(“Converting " + file_name + " to NumPy Array …”)可以了解到,这个函数是用来将数据集转换成numpy数组的。
_load_img函数里面gzip.open(file_path, ‘rb’),数据集是gz后缀的,这句话就是把这个数据给读出来。
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
_load_img函数里面data = np.frombuffer(f.read(), np.uint8, offset=16)这句话,是把f.read()里面的数据转化成numpy数组,而且数组元素类型是uint8,读取的起始位置是16,为什么是16,可以看数据集TRAINING SET IMAGE FILE (train-images-idx3-ubyte)的存储内容:
[offset] [type] [value] [description]`
`0000 32 bit integer 0x00000803(2051) magic number`
`0004 32 bit integer 60000 number of images`
`0008 32 bit integer 28 number of rows`
`0012 32 bit integer 28 number of columns`
`0016 unsigned byte ?? pixel`
`0017 unsigned byte ?? pixel`
`........`
`xxxx unsigned byte ?? pixel
这部分是训练集的image信息,image信息是通过灰度值存储的,前16字节是数据集的信息,后面的字节都是图片的信息。所以要存图片的信息,就从16字节开始。
后面的data = data.reshape(-1, img_size)这句话,意思是把这个numpy数组变成行为1,列为img_size的样子。那么img_size函数最后就返回一个numpy数组。至此, _load_img函数已经解析完。
再看_convert_numpy函数,返回的dataset也就是一个字典,键是字符串,值是numpy数组。
回到init_mnist()函数里面,由print(“Creating pickle file …”)可以看到得到dataset之后,该函数进行的是创建pickle文件的操作。with open(save_file, ‘wb’) as f 这句话,意思是以二进制格式打开名字为save_file的文件只用于写入。我们的save_file = dataset_dir + “/mnist.pkl”,所以就是创建了一个pkl文件。那么写入什么呢,接下来看pickle.dump(dataset, f, -1)这句话,这句话表明,将对象dataset保存到我们的pkl文件中去,这个-1是pickle进行转换的协议版本。那么至此,init_mnist函数已经分析完,它返回一个pickle文件。
def init_mnist():
download_mnist()
dataset = _convert_numpy()
print("Creating pickle file ...")
with open(save_file, 'wb') as f:
pickle.dump(dataset, f, -1)
print("Done!")
下面有一行,with open(save_file, ‘rb’) as f: dataset = pickle.load(f),把之前的pickle文件重构为原来的python对象,给dataset。
load_mnist的参数normalize=True,这是将输入图像正规化为0-1的值,各个像素取值在0-255之间,dataset[key] /= 255.0就变成0-1之间了。
load_mnist的参数one_hot_label如果为True的话,设置将标签保存为ont-hot表示,one-hot表示是仅正确解标签为1,其余皆为0的数组。调用了 _change_one_hot_label函数来实现。
def _change_one_hot_label(X):
T = np.zeros((X.size, 10))
for idx, row in enumerate(T):
row[X[idx]] = 1
return T
load_mnist的参数flatten设置为True,则输入图像会保存为由784个元素构成的一维数组,设置为False,则输入图像为1*28 *28的三维数组。
最后load_mnist返回字典类型的dataset。键分别是train_img、train_label、test_img、test_label,值是由后缀为.gz数据集文件转换得到的Numpy数组。
def load_mnist(normalize=True, flatten=True, one_hot_label=False):
if not os.path.exists(save_file):
init_mnist()
with open(save_file, 'rb') as f:
dataset = pickle.load(f)
if normalize:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].astype(np.float32)
dataset[key] /= 255.0
if one_hot_label:
dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
dataset['test_label'] = _change_one_hot_label(dataset['test_label'])
if not flatten:
for key in ('train_img', 'test_img'):
dataset[key] = dataset[key].reshape(-1, 1, 28, 28)
return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])
至此,load_mnist函数已经分析完毕,下载MNIST数据集并使用python将数据转换成NumPy数组的全部代码:
# coding: utf-8
try:
import urllib.request
except ImportError:
raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as np
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
'train_img':'train-images-idx3-ubyte.gz',
'train_label':'train-labels-idx1-ubyte.gz',
'test_img':'t10k-images-idx3-ubyte.gz',
'test_label':'t10k-labels-idx1-ubyte.gz'
}
dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"
train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784
def _download(file_name):
file_path = dataset_dir + "/" + file_name
if os.path.exists(file_path):
return
print("Downloading " + file_name + " ... ")
urllib.request.urlretrieve(url_base + file_name, file_path)
print("Done")
def download_mnist():
for v in key_file.values():
_download(v)
def _load_label(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
labels = np.frombuffer(f.read(), np.uint8, offset=8)
print("Done")
return labels
def _load_img(file_name):
file_path = dataset_dir + "/" + file_name
print("Converting " + file_name + " to NumPy Array ...")
with gzip.open(file_path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=16)
data = data.reshape(-1, img_size)
print("Done")
return data
def _convert_numpy():
dataset = {}
dataset['train_img'] = _load_img(key_file['train_img'])
dataset['train_label'] = _load_label(key_file['train_label'])
dataset['test_img'] = _load_img(key_file['test_img'])
dataset['test_label'] = _load_label(key_file['test_label'])