摘要: 1. KL散度 KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 $P$ 和 $Q$ 之间差别的非对称性的度量。 KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数。 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示数据的理论分布,模型 阅读全文
posted @ 2019-03-20 10:18 微笑sun 阅读(8428) 评论(0) 推荐(0) 编辑