算法线性编程珠玑读书笔记之----->使用线性算法求解连续子序列的最大和
这段时间笔者几篇文章介绍了改算法线性的文章. 关联文章的地址
这个算法我在我的博客里应用动态规划做过,详细实现请参阅我的dp板块,下面给出书上最快的算法,时间复杂度为O(n),称之为线性算法。
#include <iostream> using namespace std; int x[10]={31,-41,59,26,-53,58,97,-93,-23,84}; int mmax(int a,int b) { return a>b?a:b; } int main() { int maxsofar=0,maxendinghere=0; for(int i=0;i<10;i++) { maxendinghere=mmax(maxendinghere+x[i],0); maxsofar=mmax(maxsofar,maxendinghere); } cout<<maxsofar<<endl; return 0; }
算法说明:假设我们处理了x[0...i-1]的问题,那么如何扩展为包含x[i]的问题呢?我们应用类似于分治算法的原理:前i个元素中,最大总和子数组要么在前i-1个元素中(我们
将其保存在maxsofar中),要么其结束位置为i(我们将其存贮在maxendinghere中)。
该代码十分冗长,也很快。
下面给出一个平方算法:思路很轻易懂得的:
#include <iostream> using namespace std; int x[10]={31,-41,59,26,-53,58,97,-93,-23,84}; int mmax(int a,int b) { return a>b?a:b; } int main() { int maxsofar=0; for(int i=0;i<10;i++) { int sum=0; for(int j=i;j<10;j++) { sum+=x[j]; maxsofar=mmax(maxsofar,sum); } } cout<<maxsofar<<endl; return 0; }
文章结束给大家分享下程序员的一些笑话语录: 程序语言综述
CLIPPER 程序员不去真的猎捕大象,他们只是购买大象部分的库然后花几年的时间试图综合它们。
DBASE 程序员只在夜间猎捕大象,因为那时没人会注意到他们还在使用石弓。
FOXPRO 程序员开始使用更新更好的步枪,这使他们花掉比实际狩猎更多的时间学习新的射击技术。
C 程序员拒绝直接购买步枪,宁可带着钢管和一个移动式机器车间到非洲,意欲从零开始造一枝完美的步枪。
PARADOX 程序员去非洲时带着好莱坞关于猎捕大象的电影剧本,他们认为照剧本行事就会逮到一头大象。
ACCESS 程序员在没有任何猎象经验的经验下就出发了,他们穿着华丽的猎装、带着全部装备,用漂亮的望远镜找到了大象,然后发觉忘了带扳机。
RBASE 程序员比大象还要稀少,事实上,如果一头大象看到了一个RBASE程序员,对他是个幸运日。
VISUAL ACCESS 程序员装上子弹、举起步枪、瞄准大象,这使大象感到可笑,究竟谁逃跑。他们无法抓住大象,因为由于他们对多重控制的偏爱,他们的吉普车有太多的方向盘因而无法驾驶。
ADA、APL和FORTRAN 程序员与圣诞老人和仙女一样是虚构的。
COBOL 程序员对和自己一样濒临灭绝的大象寄予了深切的同情。
---------------------------------
原创文章 By
线性和序列
---------------------------------