实验五:全连接神经网络手写数字识别实验

【实验目的】

理解神经网络原理,掌握神经网络前向推理和后向传播方法;

掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。

【实验内容】

1.使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

 

【实验报告要求】

修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
修改神经网络的学习率,观察对训练和检测效果的影响;
修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

 
  1 #构建一个类线性模型类,继承自nn.Module,nn.m中封装了许多方法
  2 #本模型所用的包含库
  3 import torch
  4 import torch.nn as nn
  5 import torch.nn.functional as F
  6 import matplotlib.pyplot as plt
  7 import torchvision
  8 import numpy as np
  9 import torch.optim as optim
 10 from torch.utils.data import Dataset    #这是一个抽象类,无法实例化
 11 from torch.utils.data import DataLoader
 12 from torchvision import transforms
 13 from torchvision import datasets
 14 import os
 15 #构建一个compose类的实例,包含转tensor(张量),后面那个是标准化,两个参数分别是均值和标准差
 16 train_transform = transforms.Compose([
 17                                 transforms.RandomAffine(degrees = 0,translate=(0.1, 0.1)),#对照片进行随机平移
 18                                 transforms.RandomRotation((-10,10)),        #随机旋转
 19                                 transforms.ToTensor(),
 20                                 transforms.Normalize((0.1307,),(0.3081,))])
 21 test_transform = transforms.Compose([transforms.ToTensor(),
 22                                     transforms.Normalize((0.1307,),(0.3081,))])
 23 #这2个值也是调参重灾区……
 24 train_batch_size = 256
 25 learning_rate = 0.006
 26 test_batch_size = 100
 27 random_seed = 2         # 随机种子,设置后可以得到稳定的随机数
 28 torch.manual_seed(random_seed)
 29 torch.cuda.manual_seed_all(random_seed) #为gpu提供随机数
 30 # 下载训练集 MNIST 手写数字训练集
 31 # 数据是datasets类型的
 32 train_dataset = datasets.FashionMNIST(
 33     root='../datasets', train=True, transform=transforms.ToTensor(), download=False)
 34 
 35 test_dataset = datasets.FashionMNIST(
 36     root='../datasets', train=False, transform=transforms.ToTensor(),download=False)
 37 
 38 train_loader = DataLoader(dataset=train_dataset,batch_size=train_batch_size,shuffle=True,pin_memory=True)
 39 test_loader = DataLoader(dataset=test_dataset,batch_size=test_batch_size,shuffle=False,pin_memory=True)
 40 class Net(nn.Module):
 41     def __init__(self):
 42         super(Net, self).__init__()
 43         #卷积层
 44         self.conv1 = nn.Conv2d(1  ,32, kernel_size=5,padding=2)
 45         self.conv2 = nn.Conv2d(32 ,64, kernel_size=5,padding=2)
 46         self.conv3 = nn.Conv2d(64 ,128,kernel_size=5,padding=2)
 47         self.conv4 = nn.Conv2d(128,192,kernel_size=5,padding=2)
 48 
 49         #残差神经网络层,其中已经包含了relu
 50         self.rblock1 = ResidualBlock(32)
 51         self.rblock2 = ResidualBlock(64)
 52         self.rblock3 = ResidualBlock(128)
 53         self.rblock4 = ResidualBlock(192)
 54         
 55         #BN层,归一化,使数据在进行Relu之前不会因为数据过大而导致网络性能的不稳定
 56         self.bn1 = nn.BatchNorm2d(32)
 57         self.bn2 = nn.BatchNorm2d(64)
 58         self.bn3 = nn.BatchNorm2d(128)
 59         self.bn4 = nn.BatchNorm2d(192)
 60         
 61         #最大池化,一般最大池化效果都比平均池化好些
 62         self.mp = nn.MaxPool2d(2)
 63         
 64         #fully connectected全连接层
 65         self.fc1 = nn.Linear(192*7*7, 256)  # 线性
 66         self.fc6 = nn.Linear(256, 10)  # 线性
 67 
 68     def forward(self, x):
 69         in_size = x.size(0)
 70         
 71         x = self.conv1(x)   #channels:1-32  w*h:28*28  
 72         x = self.bn1(x)
 73         x = F.relu(x) 
 74         x = self.rblock1(x)
 75         
 76         x = self.conv2(x)   #channels:32-64 w*h:28*28
 77         x = F.relu(x)   
 78         x = self.bn2(x)
 79         x = self.rblock2(x)
 80         
 81         x = self.mp(x)      #最大池化,channels:64-64    w*h:28*28->14*14
 82         
 83 
 84         x = self.conv3(x)   #channels:64-128    w*h:14*14
 85         x = self.bn3(x)
 86         x = F.relu(x)
 87         x = self.rblock3(x)
 88 
 89         x = self.conv4(x)   #channels:128-192   w*h:14*14
 90         x = self.bn4(x)
 91         x = F.relu(x)
 92         x = self.rblock4(x)
 93         
 94         x = self.mp(x)      #最大池化,channels:192-192  w*h:14*14->7*7
 95 
 96         x = x.view(in_size, -1)     #展开成向量
 97         x = F.relu(self.fc1(x))  # 使用relu函数来激活
 98         
 99         return self.fc6(x)
100 
101 #调用GPU
102 os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
103 torch.backends.cudnn.benchmark = True       #启用cudnn底层算法
104 device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
105 #print(device)
106 torch.cuda.empty_cache()        #释放显存
107 
108 model.to(device)
109 
110 # #构建损失函数
111 criterion = torch.nn.CrossEntropyLoss()      #交叉熵
112 #
113 # #构建优化器,参数1:模型权重,参数二,learning rate
114 optimizer = optim.SGD(model.parameters(),lr=learning_rate,momentum=0.5)    #带动量0.5
115 
116 #optimizer = optim.RMSprop(model.parameters(),lr=learning_rate,alpha=0.99,momentum = 0.5)
117 # optimizer = torch.optim.Adam(model.parameters(),
118 #                              lr=0.05,
119 #                              betas=(0.9, 0.999),
120 #                              eps=1e-08,
121 #                              weight_decay=0,
122 #                              amsgrad=False)
123 #设置学习率梯度下降,如果连续2个epoch测试准确率没有上升,则降低学习率,系数0.5
124 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=2, verbose=True, threshold=0.00005, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)
125 #把训练封装成一个函数
126 def train(epoch):
127     running_loss =0.0
128     for batch_idx,data in enumerate(train_loader,0):
129         inputs,target = data
130         inputs,target = inputs.to(device),target.to(device)
131         optimizer.zero_grad()
132 
133         #forward,backward,update
134         outputs = model(inputs)
135         loss = criterion(outputs,target)
136         loss.backward()
137         optimizer.step()
138 
139         running_loss+=loss.item()
140         if batch_idx%300==299:
141             train_loss_val.append((running_loss/300))
142             #print('[%d,%5d] loss:%3f'%(epoch+1,batch_idx+1,running_loss/300))
143             print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
144             running_loss = 0.0
145 #把测试封装成函数
146 def test():
147     correct = 0
148     total = 0
149     with torch.no_grad():
150         for data in test_loader:
151             images,labels = data
152             images, labels = images.to(device), labels.to(device)
153             outputs = model(images)
154             #torch.max()返回的是两个值,第一个是用_接受(蚌埠住了),第二个是pre
155             _, predicted = torch.max(outputs.data,dim=1)       #从第一维度开始搜索
156             total += labels.size(0)
157             correct += (predicted==labels).sum().item()
158     print('Accuracy on test set: %f %% [%d/%d]' % (100 * correct / total, correct, total))
159 
160     return correct/total
161 train_epoch = []
162 model_accuracy = []
163 temp_acc = 0.0
164 train_loss_val = []
165 for epoch in range(30):
166     train(epoch)
167     acc = test()
168 
169     print(epoch + 1,acc)
170     train_epoch.append(epoch)
171     model_accuracy.append(acc)
172     scheduler.step(acc)
173 
174 plt.figure(1)
175 plt.plot(train_epoch, model_accuracy)  # 传入列表,plt类用来画图
176 plt.grid(linestyle=':')
177 plt.ylabel('accuracy')  # 定义y坐标轴的名字
178 plt.xlabel('epoch')  # 定义x坐标
179 plt.show()  # 显示
 1 Output exceeds the size limit. Open the full output data in a text editor
 2 Accuracy on test set: 89.560000 % [8956/10000]
 3 1 0.8956
 4 Accuracy on test set: 89.340000 % [8934/10000]
 5 2 0.8934
 6 Accuracy on test set: 89.360000 % [8936/10000]
 7 3 0.8936
 8 Accuracy on test set: 89.380000 % [8938/10000]
 9 4 0.8938
10 Epoch     4: reducing learning rate of group 0 to 3.0000e-03.
11 Accuracy on test set: 89.340000 % [8934/10000]
12 5 0.8934
13 Accuracy on test set: 89.470000 % [8947/10000]
14 6 0.8947
15 Accuracy on test set: 89.430000 % [8943/10000]
16 7 0.8943
17 Epoch     7: reducing learning rate of group 0 to 1.5000e-03.
18 Accuracy on test set: 89.360000 % [8936/10000]
19 8 0.8936
20 Accuracy on test set: 89.470000 % [8947/10000]
21 9 0.8947
22 Accuracy on test set: 89.440000 % [8944/10000]
23 10 0.8944
24 Epoch    10: reducing learning rate of group 0 to 7.5000e-04.
25 Accuracy on test set: 89.410000 % [8941/10000]
26 11 0.8941
27 ...
28 Accuracy on test set: 89.400000 % [8940/10000]
29 14 0.894
30 Accuracy on test set: 89.510000 % [8951/10000]
31 15 0.8951

 修改神经网络的学习率,观察对训练和检测效果的影响;

在训练神经网络时,需要设置学习率(learning rate)控制参数的更新速度,学习速率设置过小,会极大降低收敛速度,增加训练时间;学习率太大,可能导致参数在最优解两侧来回振荡。学习率和训练次数同样也会影响正确率。学习率太高,代价函数不容易降低到最低点(会不断越过最低点)。

修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

一般来说,在调参合理的情况下,层数和神经元数越多,正确率越高,不过相应地,容易出现过拟合

 

 

posted @ 2022-11-25 03:05  僵尸棋  阅读(161)  评论(0编辑  收藏  举报