具体数学第二版第四章习题(1)
1 令$n=2^{a}3^{b}5^{c}$,它的因子个数为$k=(a+1)(b+1)(c+1)$。所以$k=1,2,3,4,5,6$时对应的$n=1,2,4,6,16,12$
2 $Gcd(n,m)*Lcm(n,m)=n*m$
$Gcd((n)mod(m),m)*Lcm((n)mod(m),m)=(n)mod(m)*m$
$Gcd(n,m)=Gcd((n)mod(m),m)$
$\Rightarrow Lcm(n,m)=Lcm((n)mod(m),m)*\frac{n}{(n)mod(m)}$
3 $x$是整数时满足,$x$为实数时$\pi (x)-\pi(x-1)=[\left \lfloor x \right \rfloor is$ $prime]$
4 depth1: $\frac{1}{1},\frac{1}{-1},\frac{-1}{-1},\frac{-1}{1}$
depth2: $\frac{1}{2},\frac{2}{1},\frac{2}{-1},\frac{-1}{-2},\frac{-2}{-1},\frac{-2}{1},\frac{-1}{2}$
如果把分子分母看作一个二维向量的话,每一层都是顺时针排列的。
5
$L^{k}=\begin{bmatrix}
1 & k\\
0 & 1
\end{bmatrix}$
$R^{k}=\begin{bmatrix}
1 & 0\\
k & 1
\end{bmatrix}$
6 $(x)mod(0)=x\rightarrow a=b$
7 $m$需要满足$(m)mod(10)=0,(m)mod(9)=k,(m)mod(8)=1$
$(m)mod(10)=0$说明$m$是偶数,$(m)mod(8)=1$说明$m$是奇数。这是矛盾的。
8 $9x+y=3k,10x=5p$.这说明$y$可以取0,3,$x$可以取0,1.
9 $3^{2t+1}mod(4)=3$。所以$3^{2t+1}=4k+3$.所以$\frac{3^{2t+1}-1}{2}=2k+1$是奇数。
另外$\frac{3^{77}-1}{2}$可以被$\frac{3^{7}-1}{2}$整除。因为$3^{77}-1=(3^{7}-1)(3^{70}+3^{63}+..+3^{7}+3^{0})$
10 $999=3^{3}37^{1}\rightarrow \varphi (999)=999(1-\frac{1}{3})(1-\frac{1}{37})=648$
11 $f(n)=g(n)-g(n-1)\rightarrow \sigma (0)=1,\sigma (1)=-1,\sigma (n)=0,n>1$
12 $\sum_{d|m}\sum _{k|d}\mu (k)g(\frac{d}{k})=\sum_{d|m}\sum _{k|d}\mu (\frac{d}{k})g(k)=\sum_{k|m}\sum _{d|\frac{m}{k}}\mu (d)g(k)=\sum_{k|m}g(k)*[\frac{m}{k}=1]=g(m)$
13 $n$的每个质因子个数都是1.(1)$n_{p}\leq 1$ (2) $\mu (n)\neq 0$
14 $k>0$时两个都成立。
15 很明显5没有作为$e_{n}$