具体数学第二版第三章习题(4)

46 (1)证明:

首先有$2n(n+1)=\left \lfloor 2n(n+1)+\frac{1}{2} \right \rfloor=\left \lfloor 2(n^{2}+n+\frac{1}{4}) \right \rfloor=\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor$

其次,令$n+\theta =(\sqrt{2}^{l}+\sqrt{2}^{l-1})m=(1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m$,$n^{'}+\theta^{'} =(\sqrt{2}^{l+1}+\sqrt{2}^{l})m=(1+\sqrt{2})\sqrt{2}^{l}m$

如果$l$为偶数,那么$n+\theta =(1+\frac{\sqrt{2}}{2})k,n^{'}+\theta^{'} =(1+\sqrt{2})k$.所以$\theta =\left \{ \frac{\sqrt{2}}{2}k \right \},\theta^{'} =\left \{ \sqrt{2}k \right \}$,所以$\theta$和$\theta^{'}$的关系是要么$\theta^{'}=2\theta$($\left \lfloor \sqrt{2}k \right \rfloor$为偶数),要么$\theta^{'}=2\theta-1$($\left \lfloor \sqrt{2}k \right \rfloor$为奇数);

如果$l$为奇数,那么$n+\theta =(1+\sqrt{2})k,n^{'}+\theta^{'} =(2+\sqrt{2})k$,这时候$\theta = \theta^{'}$

最后,假设要证明的式子成立,那么$n^{'}=\left \lfloor \sqrt{2n(n+1)} \right \rfloor$

$=\left \lfloor \sqrt{\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor} \right \rfloor$

$=\left \lfloor \sqrt{2}(n+\frac{1}{2}) \right \rfloor$ (这一步参见公式$3.9$)

$=\left \lfloor \sqrt{2}\left ( (1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m -\theta +\frac{1}{2}\right ) \right \rfloor$

$=\left \lfloor n^{'}+\theta^{'}+\sqrt{2}(\frac{1}{2}-\theta) \right \rfloor$

所以只要证明$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

首先当$\theta=\theta^{'}$时成立,

其次,如果$\theta^{'}=2\theta-d$时($d=0$或者$d=1$),那么$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

$\Leftrightarrow 0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\frac{\theta^{'} +d}{2})<1$

$\Leftrightarrow 0\leq \theta^{'}(2-\sqrt{2})+\sqrt{2}(1-d)<2$

最后这个式子明显成立

(2)由于$Spec(1+\frac{\sqrt{2}}{2}),Spec(1+\sqrt{2})$是一个划分,所以对于任何一个$a$一定存在唯一的$(l,m)$使得$a=(\sqrt{2}^{l}+\sqrt{2}^{l-1})m$,这时候$L_{n}=\left \lfloor\left (  \sqrt{2}^{l+n} -\sqrt{2}^{l+n-1} \right )m\right \rfloor$

47 (1) $c=-\frac{1}{2}$ (2)$c$是整数(3)$c=0$(4)$c$可以为任意值。

48 令$x^{:0}=1,x^{:(k+1)}=x\left \lfloor x^{:k} \right \rfloor,a_{k}=\left \{ x^{:k} \right \},b_{k}=\left \lfloor x^{:k} \right \rfloor\Rightarrow a_{k}+b_{k}=x^{:k}=xb_{k-1}$

所以$(1-xz)(1+b_{1}z+b_{2}z^{2}+...)=1-a_{1}z-a_{2}z^{2}-...\Rightarrow \frac{1}{1-xz}=\frac{1+b_{1}z+b_{2}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}$

对上面的式子两边求$log$并且对$z$求导可以得到$\frac{x}{1-xz}=\frac{a_{1}+2a_{2}z+3a_{3}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}+\frac{b_{1}+2b_{2}z+3b_{3}z^{2}+...}{1+b_{1}z+b_{2}z^{2}-...}$

利用公式$\frac{1}{1-z}=1+z+z^{2}+z^{3}+...$分别展开上面式子的左右两侧,可以得到左侧$z^{n-1}$的系数为$x^{n}$,右侧与$z^{n-1}$($n=3$)相关的展开为$(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+(a_{1}z+a_{2}z^{2})+(a_{1}z+a_{2}z^{2})^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-(b_{1}z+b_{2}z^{2})+(b_{1}z+b_{2}z^{2})^{2} \right )=(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+a_{1}z+(a_{1}^{2}+a_{2})z^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-b_{1}z+(b_{1}^{2}-b_{2})z^{2} \right )$

可以得到$z^{2}$的系数为$a_{1}(a_{1}^{2}+a_{2})+2a_{1}a_{2}+3a_{3}+b_{1}(b_{1}^{2}-b_{2})-2b_{1}b_{2}+3b_{3}=3(a_{3}+b_{3})+3a_{1}a_{2}+a_{1}^{3}-3b_{1}b_{2}+b_{1}^{3}$

所以可以证明$n=3$时成立。

49 $\left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+\left \lfloor n(\left \lfloor \beta \right \rfloor+\left \{ \beta \right \}) \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+n\left \lfloor \beta \right \rfloor+\left \lfloor n\left \{ \beta \right \} \right \rfloor$

$=\left \lfloor n\left \{ \beta \right \} \right \rfloor+\left \lfloor n(\alpha+\left \lfloor \beta \right \rfloor) \right \rfloor$

所以令$\alpha^{'}=\left \{ \beta \right \},\beta^{'}=\alpha+\left \lfloor \beta \right \rfloor$可以得到完全相同的集合。所以$\alpha=\left \{ \beta \right \}$

并且,如果$\alpha=\left \{ \beta \right \}$,令$m=\left \lfloor \beta \right \rfloor,S=\left \{ \left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor-mn|n>0 \right \}=\left \{ 2\left \lfloor n\alpha \right \rfloor|n>0 \right \}$

所以$S$中相邻两个元素的差值要么是0要么是2,所以$\frac{1}{2}S=Spec(\alpha)$进而可以确定$\alpha$

50 书中给出的解释是$\alpha \beta ,\beta ,1$在有理数上线性独立,也就是说不存在有理数$\frac{p}{q},\frac{m}{n}$使得$1=\frac{p}{q}\alpha\beta+\frac{m}{n}\beta$。如何证明完全不懂。

51 题目中的证明:

(1)令$g(n)=Z_{n}^{-2^{n}}>0$,因为$\frac{g(n)}{g(n-1)}=\frac{Z_{n}^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=\frac{(Z_{n-1}^{2}-1)^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}<\frac{(Z_{n-1}^{2})^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=1$,所以$g(n)$是减函数,所以$f(x)^{2^{n}}<Z_{n}$

(2)令$p(n)=(Z_{n}-1)^{-2^{n}}$,将$p(n),p(n-1)$两边同时取$2^{n+1}$,可以得到$p(n)$是增函数,所以$f(x)^{2^{n}}>Z_{n}-1$

$f(x)$其他的性质不知道。

52 首先题目中的描述貌似应该是$\alpha_{1}>\alpha_{2}>...>\alpha_{m}$

$Spec(7;-3)\bigcup Spec(\frac{7}{2};-1)\bigcup Spec(\frac{7}{4};0)$是已知的$\alpha$是有理数的一组解。所以题目中给出的证明有可能是成立的。

53 有些数字好像很快就找到了,比如

$\frac{2}{5}=\frac{1}{3}+\frac{1}{15},\frac{2}{7}=\frac{1}{5}+\frac{1}{13}+\frac{1}{115}+\frac{1}{10465},\frac{3}{11}=\frac{1}{5}+\frac{1}{15}+\frac{1}{165}$

posted @ 2018-08-14 09:14  朝拜明天19891101  阅读(902)  评论(0编辑  收藏  举报