topcoder srm 661 div1

problem1 link

$N+1$到$M$ 之间的数字要包含所有1到$N$之间出现的质因子的最高幂即可。

problem2 link

从第一个节点到第$N$个节点依次考虑。对于第$i$个节点来说,其颜色为$j$时,可以选择与前面的连边或者不连边,方案数为$1+(i-1)+g(i-1,j)$。其中$g(x,y)$ 表示前$x$个节点中,颜色为$y$ 的节点的个数

所以节点$i$的方案数为$f(i)=\sum_{j=1}^{K}(1+i-1-g(i-1,j))=K*i-\sum_{j=1}^{K}g(i-1,j)=K*i-(i-1)=$

$K+(K-1)(i-1)$

所以最后的答案为:

$ans=\prod_{i=1}^{N}f(i)$
$=\prod_{i=1}^{N}(K+(K-1)(i-1))$
$=\prod_{i=0}^{N-1}(K+(K-1)i)$
$=\prod_{j=0}^{min(M-1,N-1)}(K+(K-1)j)^{\frac{N-1-j}{M}+1}$

最后一步是由于$[1,N]$之间的数字模$M$会出现循环。

problem3 link

相连的顶点会把整个区间分成若干段。预处理四个数组:

(1) $L[i][j]$表示[i,j]是一段,这一段距离左端点最远的点的距离
(2) $R[i][j]$表示[i,j]是一段,这一段距离右端点最远的点的距离 

(3) $S[i][j]$表示[i,j]是一段,这一段中距离最远的两点之间的距离

(4)$D[i][j]$表示这一段左右两个端点的距离

然后二分答案。设为$mid$.设 $dp[i][j]$表示已经把$j$对顶点连了起来,最后一对是在$i$的位置时以$i$作为路径的结尾的最小值。那么每次新连一对的时候,要保证前面不能出现大于$mid$的情况。

 

code for problem1

#include <algorithm>
#include <vector>
using namespace std;

class MissingLCM {
 public:
  int getMin(int N) {
    if (N == 1) {
      return 2;
    }
    long long result = 0;
    std::vector<bool> tags(N + 1, false);
    for (int i = 2; i <= N; ++i) {
      if (!tags[i]) {
        for (int j = i + i; j <= N; j += i) {
          tags[j] = true;
        }
        long long t = 1;
        while (t <= N / i) {
          t *= i;
        }
        result = std::max(result, N % t == 0 ? N + t : N / t * t + t);
      }
    }
    return static_cast<int>(result);
  }
};

code for problem2

class ColorfulLineGraphs {
 public:
  int countWays(long long N, long long K, int M) {
    long long result = 1;
    for (int i = 0; i < M && i < N; ++i) {
      long long x = K + (K - 1) * i;
      long long y = (N - 1 - i) / M + 1;
      result = result * Pow(x, y, M) % M;
    }
    return static_cast<int>(result);
  }

 private:
  long long Pow(long long x, long long y, int M) {
    x %= M;
    long long result = 1;
    while (y != 0) {
      if (y % 2 == 1) {
        result = result * x % M;
      }
      x = x * x % M;
      y /= 2;
    }
    return result;
  }
};

code for problem3

#include <algorithm>
#include <cstring>
#include <vector>

constexpr int kMaxN = 200;
int L[kMaxN][kMaxN];
int R[kMaxN][kMaxN];
int S[kMaxN][kMaxN];
int D[kMaxN][kMaxN];
int dp[kMaxN][kMaxN + 1];

class BridgeBuilding {
 public:
  int minDiameter(const std::vector<int> &a, const std::vector<int> &b, int K) {
    int n = static_cast<int>(a.size()) + 1;
    std::vector<int> prefix_a(n);
    std::vector<int> prefix_b(n);
    for (int i = 1; i < n; ++i) {
      prefix_a[i] = prefix_a[i - 1] + a[i - 1];
      prefix_b[i] = prefix_b[i - 1] + b[i - 1];
    }
    auto Dist = [&](int a, int b, int t) {
      if (a >= b) {
        return 0;
      }
      return t == 0 ? prefix_a[b] - prefix_a[a] : prefix_b[b] - prefix_b[a];
    };
    auto GetMax = [&](int left, int right) {
      int number = right - left;
      auto Get = [&](int k) {
        if (k <= number) {
          return Dist(left, left + k, 0);
        }
        return Dist(left, right, 0) + Dist(right - (k - number), right, 1);
      };
      int total = Dist(left, right, 0) + Dist(left, right, 1);
      int tmax = 0;
      for (int L = 0, R = 0; L < number * 2; ++L) {
        if (R <= L) {
          R = L + 1;
        }
        int t = Get(L);
        while (R < number * 2 && Get(R) - t < total / 2) {
          int p = Get(R) - t;
          tmax = std::max(tmax, std::min(p, total - p));
          ++R;
        }
        int p = Get(R) - t;
        tmax = std::max(tmax, std::min(p, total - p));
      }
      return tmax;
    };
    for (int i = 0; i < n; ++i) {
      for (int j = i + 1; j < n; ++j) {
        int s0 = Dist(i, j, 0);
        int s1 = Dist(i, j, 1);
        D[i][j] = std::min(s0, s1);
        S[i][j] = GetMax(i, j);
        L[i][j] = R[i][j] = 0;
        for (int k = i; k <= j; ++k) {
          L[i][j] =
              std::max(L[i][j], std::min(Dist(i, k, 0), Dist(k, j, 0) + s1));
          L[i][j] =
              std::max(L[i][j], std::min(Dist(i, k, 1), Dist(k, j, 1) + s0));
          R[i][j] =
              std::max(R[i][j], std::min(Dist(k, j, 0), Dist(i, k, 0) + s1));
          R[i][j] =
              std::max(R[i][j], std::min(Dist(k, j, 1), Dist(i, k, 1) + s0));
        }
      }
    }

    auto Check = [&](int mid) {
      memset(dp, -1, sizeof(dp));
      for (int i = 0; i < n; ++i) {
        if (prefix_a[i] + prefix_b[i] <= mid) {
          dp[i][1] = std::max(prefix_a[i], prefix_b[i]);
        }
      }
      for (int i = 0; i < n; ++i) {
        for (int j = 1; j < K; ++j) {
          if (dp[i][j] != -1) {
            for (int k = i + 1; k < n; ++k) {
              if (S[i][k] <= mid && dp[i][j] + L[i][k] <= mid) {
                int v = std::max(R[i][k], dp[i][j] + D[i][k]);
                if (dp[k][j + 1] == -1 || dp[k][j + 1] > v) {
                  dp[k][j + 1] = v;
                }
              }
            }
          }
        }
      }
      int result = std::numeric_limits<int>::max();
      for (int i = K - 1; i < n; ++i) {
        if (dp[i][K] != -1 && Dist(i, n - 1, 0) + Dist(i, n - 1, 1) <= mid) {
          result = std::min(result, dp[i][K] + std::max(Dist(i, n - 1, 0),
                                                        Dist(i, n - 1, 1)));
        }
      }
      return result <= mid;
    };
    int result = std::numeric_limits<int>::max();
    int left = 0, right = result;
    while (left <= right) {
      int mid = (left + right) >> 1;
      if (Check(mid)) {
        result = std::min(result, mid);
        right = mid - 1;
      } else {
        left = mid + 1;
      }
    }
    return result;
  }
};
posted @ 2017-05-17 14:10  朝拜明天19891101  阅读(276)  评论(0编辑  收藏  举报