topcoder srm 640 div1 [FINISHED]
problem1 link
首先使用两个端点颜色不同的边进行连通, 假设现在的联通分量的个数是$m$, 那么答案是$n-m$。
problem2 link
首先假设$n_{1} \leq n_{2}$
首先构造一个最小割的模型。左边的$n_{1}$个点与源点相连,右边的$n_{2}$个点与汇点相连。小割为$ans$.
假设有$x$个割边出现在源点和$n_{1}$之间,那么$y=ans-x$个出现在$n_{2}$和汇点之间。
连线的规则是:左边的$x$个顶点与右侧的$n_{2}$个顶点都连边, 左侧剩下的$n_{1}-x$个顶点与右侧割边对应的$y$个顶点连边.
假设$ans=3,x=2,y=1$,那么连边如下图所示
首先,$x$需要满足的条件为$x\geq d,ans-x\geq d \Rightarrow d\leq x \leq ans-d$
其次,边的个数为$n_{2}x+(n_{1}-x)(ans-x)=x^{2}-(n_{1}+ans-n_{2})x+n_{1}a$
为了得到最大值,可以枚举$x$的各种边界值. 令$a=\left \lfloor \frac{n_{1}+ans-n_{2}}{2} \right \rfloor,b=a+1$.其实就是分类讨论$[a,b],[d,ans-d]$的关系.
problem3 link
如果两个数字$x,y$的差$x-y$能被数$p$整除,那么有$x\equiv y(mod(p))$。
所以可以对每个素数计算有那些数对$(A_{i},B_{j})$的余数相等,他们的差值就含有素数$p$。最后就剩下那些素数特别大的。
这个题目应该有几组特别***钻的测试数据,代码一直超时。
code for problem1
#include <vector> class ChristmasTreeDecoration { public: int solve(const std::vector<int> &col, const std::vector<int> &x, const std::vector<int> &y) { int n = static_cast<int>(col.size()); int m = static_cast<int>(x.size()); father_.resize(n); for (int i = 0; i < n; ++i) { father_[i] = i; } int number = 0; for (int i = 0; i < m; ++i) { int u = x[i] - 1; int v = y[i] - 1; if (col[u] != col[v]) { int pu = GetRoot(u); int pv = GetRoot(v); if (pu != pv) { father_[pu] = pv; ++number; } } } return n - 1 - number; } private: int GetRoot(int x) { if (father_[x] == x) { return x; } return father_[x] = GetRoot(father_[x]); } std::vector<int> father_; };
code for problem2
#include <algorithm> class MaximumBipartiteMatchingProblem { public: long long solve(int n1, int n2, int ans, int d) { long long result = -1; auto Update = [&](int x) { if (x < d || ans - x < d) { return; } result = std::max(result, 1ll * n2 * x + 1ll * (n1 - x) * (ans - x)); }; if (n1 > n2) { std::swap(n1, n2); } if (n1 == ans) { return 1ll * n1 * n2; } Update(0); Update(d); Update(ans - d); Update(n1); Update(n2); Update((ans + n1 - n2) / 2); Update((ans + n1 - n2) / 2 + 1); return result; } };
code for problem3
#include <algorithm> #include <vector> constexpr int kMax = 1000; constexpr int kMaxPrime = 31622; int diff[kMax][kMax]; int values[kMax][kMax]; int nxt[kMax]; int head[kMaxPrime]; int tag[kMaxPrime]; int prime_tag[kMaxPrime]; class TwoNumberGroups { static constexpr int kMod = 1000000007; public: int solve(const std::vector<int> &A, const std::vector<int> &numA, const std::vector<int> &B, const std::vector<int> &numB) { int n = static_cast<int>(A.size()); int m = static_cast<int>(B.size()); for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { diff[i][j] = std::abs(A[i] - B[j]); } } int result = 0; for (int p = 2; p < kMaxPrime; ++p) { if (prime_tag[p] != 1) { for (int x = p + p; x < kMaxPrime; x += p) { prime_tag[x] = 1; } for (int i = 0; i < n; ++i) { int t = A[i] % p; if (tag[t] != p) { head[t] = -1; tag[t] = p; } nxt[i] = head[t]; head[t] = i; } for (int i = 0; i < m; ++i) { int t = B[i] % p; if (tag[t] == p) { for (int j = head[t]; j != -1; j = nxt[j]) { if (A[j] != B[i]) { values[j][i] += p; while (diff[j][i] % p == 0) { diff[j][i] /= p; } } } } } } } for (int i = 0; i < n; ++i) { for (int j = 0; j < m; ++j) { if (diff[i][j] > 1) { values[i][j] += diff[i][j]; } result += 1ll * numA[i] * numB[j] % kMod * values[i][j] % kMod; if (result >= kMod) { result -= kMod; } } } return result; } };