PCA Biplot含义

PCA biplot = PCA score plot + loading plot

matlab PCA分析命令:

[coeff,score,latent,tsquared,explained,mu] = pca(X);

  

前两个主成分的PCA Biplot

如上图所示,PCA Biplot包含两部分。首先是loading plot,这里loading即PCA变换系数。这里有6个变量(X的维度为6),返回的loading为:

coeff =

    0.3541   -0.1231    0.2676    0.1314    0.6925   -0.5396
    0.3408    0.5872    0.6770    0.0068   -0.2737    0.0759
    0.2556   -0.2597    0.1699   -0.0613    0.4066    0.8181
    0.4483   -0.3120   -0.1127    0.7449   -0.3655    0.0218
    0.5788    0.4460   -0.6410   -0.2127    0.0952    0.0306
    0.3965   -0.5257    0.1328   -0.6154   -0.3710   -0.1800

  ps: loading矩阵是正交的(coeff * coeff' = I)。

上面PCA Biplot中考虑前两个主成分,绘制loading plot时取coeff的前两列。可以看到,第二行和第五行两个坐标均为正,因此,PCA Biplot中V2, V5在第一象限。其余行均为一正一负,因此V1, V3, V4, V6均位于第四象限。

其次是,score plot,这里score指的是主成分值(即输入X经过loading矩阵变换后的值,也称为潜变量)。这里仅考虑前两个主成分,绘制即可。上图红色的散点即是score plot。

Please note that both the scores and the loadings are scaled to a maximum value of 1.0.

请注意,score和loading都被缩放到1.0的最大值。

PCA biplot含义

从PCA biplot可以看出什么?

1. 各变量间的相关性

V1至V6之间的夹角表示各维度间的相关性,从上图看出,各变量间夹角均小于90度,说明他们呈正相关。(等于90度,没有明确的相关关系,大于90度,负相关关系)

2. 各变量对前两个主成分的贡献

V1-V6的径向长度表示影响的大小,方向表示正负。如,6个变量均对第一主成分有正的影响,V2, V5对第二主成分有正的响应,V1, V3, V4, V6对第二主成分有负的响应。

3. 主成分的变化性

可以看到第一主成分具有最大的方差,第二主成分变化性显著减弱。

4. score的分布

从上图看出除了一些离群点外,score的分布较为紧凑,说明所有样本对系统的反应较为一致。

 

A biplot simultaneously plots information on the observations and the variables in a multidimensional dataset.

A biplot can optimally represent any two of the following characteristics:
  • distances between observations
  • relationships between variables
  • inner products between observations and variables

 

 训练集中异常值对Biplot的影响

发现训练集中如果存在离群值则会对Biplot有较大的影响。Biplot中的点会随着训练集比率的增大逐渐发生偏斜。

 

训练集比率:10%

训练集比率:20%

 如上图所示,训练集比率增大后Biplot发生显著变化。经检查后发现,因为数据集中存在部分离群点,当训练集比率增大时,训练集中会引入更多的异常点,这导致训练集统计属性发生改变。

为了避免发生上述现象,可以将训练集中的异常样本剔除,这样训练集样本更具有代表性,刻画的数据分布更准确。

 训练集比率:20%(剔除训练集离群值)

 

 

 

posted on 2021-09-03 10:21  那抹阳光1994  阅读(5527)  评论(0编辑  收藏  举报

导航