依分布收敛(convergence in distribution)

Convergence in distribution

依分布收敛是随机变量列的一种收敛性,设{ξn,n≥1}是概率空间(Ω,F,P)上的随机变量列,其相应的分布函数列为{Fn(x),n≥1},如果Fn(x)弱收敛于随机变量ξ的分布函数F(x),则称随机变量列ξn依分布收敛到随机变量ξ。 

定义

定义1

称随机变量序列依分布收敛(convergence in distribution)于随机变量X,如果对的任意连续点x,都有 

定义2

弱收敛 

是一个分布函数列,如果存在一个分布函数,使得在的每一个连续点上有成立,则称弱收敛于,并记为

依分布收敛 

为随机变量序列,是对应的分布函数列,如果存在一个具有分布函数的随机变量,使得则称依分布收敛于,并记作

我们必须指出,只有分布函数序列收敛到一个分布函数时,我们才说它是依分布收敛的,这一说明是必要的,因为分布函数序列可能收敛到一个函数,而这个函数不一定是一个分布函数。

依概率收敛、殆必收敛、依分布收敛

注意,尽管我们定义的是随机变量序列依分布收敛,其实质却是累积分布函数而非随机变量的收敛性,因此依分布收敛与依概率收敛、殆必收敛(几乎处处收敛:almost surely convergent)有着本质区别,不过,另两种收敛都分别蕴含依分布收敛。
 

相关定理

定理1

如果随机变量序列依概率收敛于随机变量X,则该序列也依分布收敛于X。

定理2

随机变量序列依概率收敛于常数,当且仅当该序列依分布收敛于,即, 等价于

 
 

posted on 2019-09-23 15:04  那抹阳光1994  阅读(5264)  评论(0编辑  收藏  举报

导航