【Rust】二叉搜索树-获取极值
环境
- Time 2022-04-12
- Rust 1.60.0
前言
说明
基于标准库来学习各种数据结构,并不是从头实现数据结构,未考虑实现性能。
特点
相比较二叉树,二叉搜索树的左节点都比父节点小,右节点都比父节点大。
使用迭代的方式获取二叉搜索树中的最大和最小值。
示例
节点定义
type NodeRef<T> = Option<Box<Node<T>>>;
struct Node<T: Ord + Debug> {
value: T,
left: NodeRef<T>,
right: NodeRef<T>,
}
节点实现
impl<T: Ord + Debug> Node<T> {
fn new_node_ref(value: T) -> NodeRef<T> {
Some(Box::new(Node {
value,
left: None,
right: None,
}))
}
}
二叉搜索树定义
struct BinarySearchTree<T: Ord + Debug> {
root: NodeRef<T>,
}
二叉搜索树实现
impl<T: Ord + Debug> BinarySearchTree<T> {
fn new() -> Self {
BinarySearchTree { root: None }
}
fn get_max(&mut self) -> Option<T> {
Node::get_max(&mut self.root)
}
fn get_min(&mut self) -> Option<T> {
Node::get_min(&mut self.root)
}
}
最大值
impl<T: Ord + Debug> Node<T> {
fn get_max(root: &mut NodeRef<T>) -> Option<T> {
let mut current = root;
while let Some(node) = current {
current = match node.right {
Some(_) => &mut current.as_mut()?.right,
None => break,
}
}
let node = current.take()?;
*current = node.left;
Some(node.value)
}
}
最小值
impl<T: Ord + Debug> Node<T> {
fn get_min(root: &mut NodeRef<T>) -> Option<T> {
let mut current = root;
while let Some(node) = current {
current = match node.left {
Some(_) => &mut current.as_mut()?.left,
None => break,
}
}
let node = current.take()?;
*current = node.right;
Some(node.value)
}
}
使用示例
fn main() {
let mut tree = BinarySearchTree::new();
vec![44, 22, 11, 33, 66, 66, 55, 77]
.into_iter()
.for_each(|e| tree.insert(e));
tree.in_order();
println!("{:?}", tree.search(&88));
println!("{:?}", tree.search(&77));
println!("{:?}", tree.max());
println!("{:?}", tree.min());
println!("{:?}", tree.get_max());
println!("{:?}", tree.get_min());
tree.in_order();
}
总结
使用迭代的方式实现了获取二叉搜索树极值的方法。
附录
源码
use std::{cmp::Ordering, fmt::Debug};
fn main() {
let mut tree = BinarySearchTree::new();
vec![44, 22, 11, 33, 66, 66, 55, 77]
.into_iter()
.for_each(|e| tree.insert(e));
tree.in_order();
println!("{:?}", tree.search(&88));
println!("{:?}", tree.search(&77));
println!("{:?}", tree.max());
println!("{:?}", tree.min());
println!("{:?}", tree.get_max());
println!("{:?}", tree.get_min());
tree.in_order();
}
type NodeRef<T> = Option<Box<Node<T>>>;
struct Node<T: Ord + Debug> {
value: T,
left: NodeRef<T>,
right: NodeRef<T>,
}
impl<T: Ord + Debug> Node<T> {
fn new_node_ref(value: T) -> NodeRef<T> {
Some(Box::new(Node {
value,
left: None,
right: None,
}))
}
fn get_max(root: &mut NodeRef<T>) -> Option<T> {
let mut current = root;
while let Some(node) = current {
current = match node.right {
Some(_) => &mut current.as_mut()?.right,
None => break,
}
}
let node = current.take()?;
*current = node.left;
Some(node.value)
}
fn get_min(root: &mut NodeRef<T>) -> Option<T> {
let mut current = root;
while let Some(node) = current {
current = match node.left {
Some(_) => &mut current.as_mut()?.left,
None => break,
}
}
let node = current.take()?;
*current = node.right;
Some(node.value)
}
}
struct BinarySearchTree<T: Ord + Debug> {
root: NodeRef<T>,
}
impl<T: Ord + Debug> BinarySearchTree<T> {
fn new() -> Self {
BinarySearchTree { root: None }
}
fn in_order(&self) {
let (mut stack, mut current) = (Vec::new(), &self.root);
while current.is_some() || !stack.is_empty() {
while let Some(node) = current {
stack.push(current);
current = &node.left;
}
current = stack.pop().unwrap();
println!("{:?}", current.as_ref().unwrap().value);
current = ¤t.as_ref().unwrap().right;
}
}
fn insert(&mut self, value: T) {
let mut current = &mut self.root;
while let Some(node) = current {
current = match value.cmp(&node.value) {
Ordering::Less => &mut node.left,
Ordering::Greater => &mut node.right,
// 相等元素不插入
Ordering::Equal => return,
};
}
*current = Node::new_node_ref(value)
}
fn search(&self, value: &T) -> bool {
let mut current = &self.root;
while let Some(node) = current {
current = match value.cmp(&node.value) {
Ordering::Less => &node.left,
Ordering::Greater => &node.right,
Ordering::Equal => return true,
};
}
false
}
fn max(&self) -> Option<&T> {
self.max_or_min(|node| &node.right)
}
fn min(&self) -> Option<&T> {
self.max_or_min(|node| &node.left)
}
fn max_or_min<F>(&self, child: F) -> Option<&T>
where
F: Fn(&Box<Node<T>>) -> &NodeRef<T>,
{
let mut current = &self.root;
while let Some(node) = current {
current = match child(node) {
Some(_) => child(node),
None => return Some(&node.value),
}
}
None
}
fn get_max(&mut self) -> Option<T> {
Node::get_max(&mut self.root)
}
fn get_min(&mut self) -> Option<T> {
Node::get_min(&mut self.root)
}
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
2021-06-30 【k8s】Volume-pv-nfs
2021-06-30 【k8s】Volume-persistentVolumeReclaimPolicy
2021-06-30 【k8s】Volume-pv
2021-06-30 【k8s】Secret-生成环境变量
2021-06-30 【k8s】Volume-nfs
2021-06-30 【k8s】Volume-hostPath
2021-06-30 【k8s】Volume-emptyDir