【Rust】二叉搜索树-检索

环境

  • Time 2022-04-11
  • Rust 1.60.0

前言

说明

基于标准库来学习各种数据结构,并不是从头实现数据结构,未考虑实现性能。

特点

相比较二叉树,二叉搜索树的左节点都比父节点小,右节点都比父节点大。
使用递归的方式来实现二叉搜索树的节点检索。

示例

节点定义

type NodeRef<T> = Option<Box<Node<T>>>;
struct Node<T: Ord + Debug> {
    value: T,
    left: NodeRef<T>,
    right: NodeRef<T>,
}

节点实现

impl<T: Ord + Debug> Node<T> {
    fn new_node_ref(value: T) -> NodeRef<T> {
        Some(Box::new(Node {
            value,
            left: None,
            right: None,
        }))
    }
    fn search(&self, value: &T) -> bool {
        let target = match value.cmp(&self.value) {
            Ordering::Less => &self.left,
            Ordering::Greater => &self.right,
            Ordering::Equal => return true,
        };

        match target {
            Some(node) => node.search(value),
            None => false,
        }
    }
}

二叉搜索树定义

struct BinarySearchTree<T: Ord + Debug> {
    root: NodeRef<T>,
}

二叉搜索树实现

impl<T: Ord + Debug> BinarySearchTree<T> {
    fn new() -> Self {
        BinarySearchTree { root: None }
    }
    fn search(&self, value: &T) -> bool {
        self.root.as_ref().map_or(false, |root| root.search(value))
    }
}

使用示例

fn main() {
    let mut tree = BinarySearchTree::new();
    vec![44, 22, 11, 33, 66, 66, 55, 77]
        .into_iter()
        .for_each(|e| tree.insert(e));
    // 中序遍历满足从小到大的顺序
    tree.in_order();
    println!("{:?}", tree.search(&88));
    println!("{:?}", tree.search(&77));
}

总结

实现了二叉搜索树的检索方法。

附录

源码

use std::{cmp::Ordering, fmt::Debug};

fn main() {
    let mut tree = BinarySearchTree::new();
    vec![44, 22, 11, 33, 66, 66, 55, 77]
        .into_iter()
        .for_each(|e| tree.insert(e));
    tree.in_order();
    println!("{:?}", tree.search(&88));
    println!("{:?}", tree.search(&77));
}

type NodeRef<T> = Option<Box<Node<T>>>;
struct Node<T: Ord + Debug> {
    value: T,
    left: NodeRef<T>,
    right: NodeRef<T>,
}

impl<T: Ord + Debug> Node<T> {
    fn new_node_ref(value: T) -> NodeRef<T> {
        Some(Box::new(Node {
            value,
            left: None,
            right: None,
        }))
    }
    fn search(&self, value: &T) -> bool {
        let target = match value.cmp(&self.value) {
            Ordering::Less => &self.left,
            Ordering::Greater => &self.right,
            Ordering::Equal => return true,
        };

        match target {
            Some(node) => node.search(value),
            None => false,
        }
    }
}

struct BinarySearchTree<T: Ord + Debug> {
    root: NodeRef<T>,
}

impl<T: Ord + Debug> BinarySearchTree<T> {
    fn new() -> Self {
        BinarySearchTree { root: None }
    }

    fn in_order(&self) {
        let (mut stack, mut current) = (Vec::new(), &self.root);
        while current.is_some() || !stack.is_empty() {
            while let Some(node) = current {
                stack.push(current);
                current = &node.left;
            }
            current = stack.pop().unwrap();
            println!("{:?}", current.as_ref().unwrap().value);
            current = &current.as_ref().unwrap().right;
        }
    }
    fn insert(&mut self, value: T) {
        let mut current = &mut self.root;
        while let Some(node) = current {
            current = match value.cmp(&node.value) {
                Ordering::Less => &mut node.left,
                Ordering::Greater => &mut node.right,
                // 相等元素不插入
                Ordering::Equal => return,
            };
        }
        *current = Node::new_node_ref(value)
    }
    fn search(&self, value: &T) -> bool {
        self.root.as_ref().map_or(false, |root| root.search(value))
    }
}
posted @   jiangbo4444  阅读(36)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 单线程的Redis速度为什么快?
· SQL Server 2025 AI相关能力初探
· AI编程工具终极对决:字节Trae VS Cursor,谁才是开发者新宠?
· 展开说说关于C#中ORM框架的用法!
历史上的今天:
2021-06-30 【k8s】Volume-pv-nfs
2021-06-30 【k8s】Volume-persistentVolumeReclaimPolicy
2021-06-30 【k8s】Volume-pv
2021-06-30 【k8s】Secret-生成环境变量
2021-06-30 【k8s】Volume-nfs
2021-06-30 【k8s】Volume-hostPath
2021-06-30 【k8s】Volume-emptyDir
点击右上角即可分享
微信分享提示