大数据入门第九天——MapReduce详解(六)MR其他补充
一、自定义in/outputFormat
1.需求
现有一些原始日志需要做增强解析处理,流程:
1、 从原始日志文件中读取数据
2、 根据日志中的一个URL字段到外部知识库中获取信息增强到原始日志
3、 如果成功增强,则输出到增强结果目录;如果增强失败,则抽取原始数据中URL字段输出到待爬清单目录
1374609560.11 1374609560.16 1374609560.16 1374609560.16 110 5 8615038208365 460023383869133 8696420056841778 2 460 0 14615 54941 10.188.77.252 61.145.116.27 35020 80 6 cmnet 1 221.177.218.34 221.177.217.161 221.177.218.34 221.177.217.167 ad.veegao.com http://ad.veegao.com/veegao/iris.action Apache-HttpClient/UNAVAILABLE (java 1.4) POST 200 593 310 4 3 0 0 4 3 0 0 0 0 http://ad.veegao.com/veegao/iris.action 5903903079251243019 5903903103500771339 5980728 1374609558.91 1374609558.97 1374609558.97 1374609559.31 112 461 8615038208365 460023383869133 8696420056841778 2 460 0 14615 54941 10.188.77.252 101.226.76.175 37293 80 6 cmnet 1 221.177.218.34 221.177.217.161 221.177.218.34 221.177.217.167 short.weixin.qq.com http://short.weixin.qq.com/cgi-bin/micromsg-bin/getcdndns Android QQMail HTTP Client POST 200 543 563 2 3 0 0 2 3 0 0 0 0 http://short.weixin.qq.com/cgi-bin/micromsg-bin/getcdndns 5903903079251243019 5903903097240039435 5980728 1374609514.70 1374609514.75 1374609514.75 1374609515.58 110 5 8613674976196 460004901700207 8623350100353878 2 460 0 14694 58793 10.184.80.32 111.13.13.222 36181 80 6 cmnet 1 221.177.156.4 221.177.217.145 221.177.156.4 221.177.217.156 retype.wenku.bdimg.com http://retype.wenku.bdimg.com/img/97308d2b7375a417866f8f09 AMB_400 GET 200 345 4183 5 5 0 0 5 5 0 0 0 0 http://retype.wenku.bdimg.com/img/97308d2b7375a417866f8f09 5903900710696611851 5903902908140003339 5937307 1374609511.98 1374609512.02 1374609512.02 1374609512.48 110 362 8613674976196 460004901700207 8623350100353878 2 460 0 14694 58793 10.184.80.32 120.204.207.160 33548 80 6 cmnet 1 221.177.156.4 221.177.217.145 221.177.156.4 221.177.217.156 t4.qpic.cn http://t4.qpic.cn/mblogpic/217cf24d43f1f19255e2/120 AMB_400 GET 200 346 3184 4 4 0 0 4 4 0 0 0 0 http://t4.qpic.cn/mblogpic/217cf24d43f1f19255e2/120 5903900710696611851 5903902896317288459 5937307 1374609518.14 1374609518.24 1374609518.24 1374609518.72 110 362 8613674976196 460004901700207 8623350100353878 2 460 0 14694 58793 10.184.80.32 120.204.207.160 33548 80 6 cmnet 1 221.177.156.4 221.177.217.145 221.177.156.4 221.177.217.156 t4.qpic.cn http://t4.qpic.cn/mblogpic/96e02ad781c9be6f5ad2/120 AMB_400 GET 200 346 3328 4 4 0 0 4 4 0 0 0 0 http://t4.qpic.cn/mblogpic/96e02ad781c9be6f5ad2/120 5903900710696611851 5903902896317288459 5937307
2.分析
程序的关键点是要在一个mapreduce程序中根据数据的不同输出两类结果到不同目录,这类灵活的输出需求可以通过自定义outputformat来实现
这里和之前不一样的点就是需要从数据库提取信息,示例用的是原始的。那我们从简就可以使用DbUtils来简化一些,在mapper中通过setup()进行初始化即可!
3.代码
这里偷个小懒就没有手动建立数据库之类测试了。关键点是自定义OutputFormat
我们默认使用的是TextOutputFormat(),在自定义之前,当然有必要先参考这个默认的东东:
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.mapreduce.lib.output; import java.io.DataOutputStream; import java.io.IOException; import java.io.UnsupportedEncodingException; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.compress.CompressionCodec; import org.apache.hadoop.io.compress.GzipCodec; import org.apache.hadoop.mapreduce.OutputFormat; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.util.*; /** An {@link OutputFormat} that writes plain text files. */ @InterfaceAudience.Public @InterfaceStability.Stable public class TextOutputFormat<K, V> extends FileOutputFormat<K, V> { public static String SEPERATOR = "mapreduce.output.textoutputformat.separator"; protected static class LineRecordWriter<K, V> extends RecordWriter<K, V> { private static final String utf8 = "UTF-8"; private static final byte[] newline; static { try { newline = "\n".getBytes(utf8); } catch (UnsupportedEncodingException uee) { throw new IllegalArgumentException("can't find " + utf8 + " encoding"); } } protected DataOutputStream out; private final byte[] keyValueSeparator; public LineRecordWriter(DataOutputStream out, String keyValueSeparator) { this.out = out; try { this.keyValueSeparator = keyValueSeparator.getBytes(utf8); } catch (UnsupportedEncodingException uee) { throw new IllegalArgumentException("can't find " + utf8 + " encoding"); } } public LineRecordWriter(DataOutputStream out) { this(out, "\t"); } /** * Write the object to the byte stream, handling Text as a special * case. * @param o the object to print * @throws IOException if the write throws, we pass it on */ private void writeObject(Object o) throws IOException { if (o instanceof Text) { Text to = (Text) o; out.write(to.getBytes(), 0, to.getLength()); } else { out.write(o.toString().getBytes(utf8)); } } public synchronized void write(K key, V value) throws IOException { boolean nullKey = key == null || key instanceof NullWritable; boolean nullValue = value == null || value instanceof NullWritable; if (nullKey && nullValue) { return; } if (!nullKey) { writeObject(key); } if (!(nullKey || nullValue)) { out.write(keyValueSeparator); } if (!nullValue) { writeObject(value); } out.write(newline); } public synchronized void close(TaskAttemptContext context) throws IOException { out.close(); } } public RecordWriter<K, V> getRecordWriter(TaskAttemptContext job ) throws IOException, InterruptedException { Configuration conf = job.getConfiguration(); boolean isCompressed = getCompressOutput(job); String keyValueSeparator= conf.get(SEPERATOR, "\t"); CompressionCodec codec = null; String extension = ""; if (isCompressed) { Class<? extends CompressionCodec> codecClass = getOutputCompressorClass(job, GzipCodec.class); codec = (CompressionCodec) ReflectionUtils.newInstance(codecClass, conf); extension = codec.getDefaultExtension(); } Path file = getDefaultWorkFile(job, extension); FileSystem fs = file.getFileSystem(conf); if (!isCompressed) { FSDataOutputStream fileOut = fs.create(file, false); return new LineRecordWriter<K, V>(fileOut, keyValueSeparator); } else { FSDataOutputStream fileOut = fs.create(file, false); return new LineRecordWriter<K, V>(new DataOutputStream (codec.createOutputStream(fileOut)), keyValueSeparator); } } }
一些参考与实例:https://www.cnblogs.com/liuming1992/p/4758504.html
http://blog.csdn.net/woshisap/article/details/42320129
http://chengjianxiaoxue.iteye.com/blog/2163284 --> 推荐
4.自定义inputFormat
public class WholeFileInputFormat extends FileInputFormat<NullWritable, BytesWritable> { //设置每个小文件不可分片,保证一个小文件生成一个key-value键值对 @Override protected boolean isSplitable(JobContext context, Path file) { return false; } @Override public RecordReader<NullWritable, BytesWritable> createRecordReader( InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { WholeFileRecordReader reader = new WholeFileRecordReader(); reader.initialize(split, context); return reader; } }
class WholeFileRecordReader extends RecordReader<NullWritable, BytesWritable> { private FileSplit fileSplit; private Configuration conf; private BytesWritable value = new BytesWritable(); private boolean processed = false; @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { this.fileSplit = (FileSplit) split; this.conf = context.getConfiguration(); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { if (!processed) { byte[] contents = new byte[(int) fileSplit.getLength()]; Path file = fileSplit.getPath(); FileSystem fs = file.getFileSystem(conf); FSDataInputStream in = null; try { in = fs.open(file); IOUtils.readFully(in, contents, 0, contents.length); value.set(contents, 0, contents.length); } finally { IOUtils.closeStream(in); } processed = true; return true; } return false; } @Override public NullWritable getCurrentKey() throws IOException, InterruptedException { return NullWritable.get(); } @Override public BytesWritable getCurrentValue() throws IOException, InterruptedException { return value; } @Override public float getProgress() throws IOException { return processed ? 1.0f : 0.0f; } @Override public void close() throws IOException { // do nothing } }
参考:http://blog.csdn.net/woshixuye/article/details/53557487
http://irwenqiang.iteye.com/blog/1448164
http://m635674608.iteye.com/blog/2243076
完整代码:
package cn.itcast.bigdata.mr.logenhance; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; import java.util.HashMap; import java.util.Map; public class DBLoader { public static void dbLoader(Map<String, String> ruleMap) throws Exception { Connection conn = null; Statement st = null; ResultSet res = null; try { Class.forName("com.mysql.jdbc.Driver"); conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/urldb", "root", "root"); st = conn.createStatement(); res = st.executeQuery("select url,content from url_rule"); while (res.next()) { ruleMap.put(res.getString(1), res.getString(2)); } } finally { try{ if(res!=null){ res.close(); } if(st!=null){ st.close(); } if(conn!=null){ conn.close(); } }catch(Exception e){ e.printStackTrace(); } } } }
package cn.itcast.bigdata.mr.logenhance; import java.io.IOException; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang.StringUtils; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Counter; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class LogEnhance { static class LogEnhanceMapper extends Mapper<LongWritable, Text, Text, NullWritable> { Map<String, String> ruleMap = new HashMap<String, String>(); Text k = new Text(); NullWritable v = NullWritable.get(); // 从数据库中加载规则信息倒ruleMap中 @Override protected void setup(Context context) throws IOException, InterruptedException { try { DBLoader.dbLoader(ruleMap); } catch (Exception e) { e.printStackTrace(); } } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // 获取一个计数器用来记录不合法的日志行数, 组名, 计数器名称 Counter counter = context.getCounter("malformed", "malformedline"); String line = value.toString(); String[] fields = StringUtils.split(line, "\t"); try { String url = fields[26]; String content_tag = ruleMap.get(url); // 判断内容标签是否为空,如果为空,则只输出url到待爬清单;如果有值,则输出到增强日志 if (content_tag == null) { k.set(url + "\t" + "tocrawl" + "\n"); context.write(k, v); } else { k.set(line + "\t" + content_tag + "\n"); context.write(k, v); } } catch (Exception exception) { counter.increment(1); } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(LogEnhance.class); job.setMapperClass(LogEnhanceMapper.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); // 要控制不同的内容写往不同的目标路径,可以采用自定义outputformat的方法 job.setOutputFormatClass(LogEnhanceOutputFormat.class); FileInputFormat.setInputPaths(job, new Path("D:/srcdata/webloginput/")); // 尽管我们用的是自定义outputformat,但是它是继承制fileoutputformat // 在fileoutputformat中,必须输出一个_success文件,所以在此还需要设置输出path FileOutputFormat.setOutputPath(job, new Path("D:/temp/output/")); // 不需要reducer job.setNumReduceTasks(0); job.waitForCompletion(true); System.exit(0); } }
package cn.itcast.bigdata.mr.logenhance; import java.io.IOException; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; /** * maptask或者reducetask在最终输出时,先调用OutputFormat的getRecordWriter方法拿到一个RecordWriter * 然后再调用RecordWriter的write(k,v)方法将数据写出 * * @author * */ public class LogEnhanceOutputFormat extends FileOutputFormat<Text, NullWritable> { @Override public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext context) throws IOException, InterruptedException { FileSystem fs = FileSystem.get(context.getConfiguration()); Path enhancePath = new Path("D:/temp/en/log.dat"); Path tocrawlPath = new Path("D:/temp/crw/url.dat"); FSDataOutputStream enhancedOs = fs.create(enhancePath); FSDataOutputStream tocrawlOs = fs.create(tocrawlPath); return new EnhanceRecordWriter(enhancedOs, tocrawlOs); } /** * 构造一个自己的recordwriter * * @author * */ static class EnhanceRecordWriter extends RecordWriter<Text, NullWritable> { FSDataOutputStream enhancedOs = null; FSDataOutputStream tocrawlOs = null; public EnhanceRecordWriter(FSDataOutputStream enhancedOs, FSDataOutputStream tocrawlOs) { super(); this.enhancedOs = enhancedOs; this.tocrawlOs = tocrawlOs; } @Override public void write(Text key, NullWritable value) throws IOException, InterruptedException { String result = key.toString(); // 如果要写出的数据是待爬的url,则写入待爬清单文件 /logenhance/tocrawl/url.dat if (result.contains("tocrawl")) { tocrawlOs.write(result.getBytes()); } else { // 如果要写出的数据是增强日志,则写入增强日志文件 /logenhance/enhancedlog/log.dat enhancedOs.write(result.getBytes()); } } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { if (tocrawlOs != null) { tocrawlOs.close(); } if (enhancedOs != null) { enhancedOs.close(); } } } }
其他 待补充。。
二、计数器与多Job串联
1.计数器
MapReduce 计数器(Counter)为我们提供一个窗口,用于观察 MapReduce Job 运行期的各种细节数据。对MapReduce性能调优很有帮助,MapReduce性能优化的评估大部分都是基于这些 Counter 的数值表现出来的。可以用来记录一些全局数据等!
相关介绍与参考:http://blog.csdn.net/xw_classmate/article/details/50954384
https://www.cnblogs.com/codeOfLife/p/5521356.html
2.多Job串联
一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现
——一般不用,因为串联在job中容易写死,建议通过shell脚本来控制
自定义实现可以通过jobName来区分多个Job,自己控制提交与依赖,所谓依赖就是一个M/R Job 的处理结果是另外的M/R 的输入
自定义实现的示例,参考:https://www.cnblogs.com/yjmyzz/p/4540469.html
通过JobControl来控制Job的依赖关系:
核心代码:
ControlledJob cJob1 = new ControlledJob(job1.getConfiguration());
ControlledJob cJob2 = new ControlledJob(job2.getConfiguration());
ControlledJob cJob3 = new ControlledJob(job3.getConfiguration());
cJob1.setJob(job1);
cJob2.setJob(job2);
cJob3.setJob(job3);
// 设置作业依赖关系
cJob2.addDependingJob(cJob1);
cJob3.addDependingJob(cJob2);
JobControl jobControl = new JobControl("RecommendationJob");
jobControl.addJob(cJob1);
jobControl.addJob(cJob2);
jobControl.addJob(cJob3);
// 新建一个线程来运行已加入JobControl中的作业,开始进程并等待结束
Thread jobControlThread = new Thread(jobControl);
jobControlThread.start();
while (!jobControl.allFinished()) {
Thread.sleep(500);
}
jobControl.stop();
return 0;
更多完整示例:http://blog.csdn.net/sven119/article/details/78806380
http://mntms.iteye.com/blog/2096456 -->推荐
三、数据压缩
经典用法:
Mapper输出压缩:
new API:
Configuration conf = new Configuration();
conf.setBoolean(Job.MAP_OUTPUT_COMPRESS, true);
conf.setClass(Job.MAP_OUTPUT_COMPRESS_CODEC, GzipCodec.class, CompressionCodec.class);
Job job = new Job(conf);
old API:
conf.setCompressMapOutput(true);
conf.setMapOutputCompressorClass(GzipCodec.class);
Reducer输出压缩:
配置方法:
mapreduce.output.fileoutputformat.compress=false
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DefaultCodec
mapreduce.output.fileoutputformat.compress.type=RECORD
代码设置法:
//将reduce输出文件压缩 FileOutputFormat.setCompressOutput(job, true); //job使用压缩 FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class); //设置压缩格式
更多参考:https://www.cnblogs.com/ggjucheng/archive/2012/04/22/2465580.html
四、常用MR配置参数优化
1.资源相关参数
11.1 资源相关参数 //以下参数是在用户自己的mr应用程序中配置就可以生效 (1) mapreduce.map.memory.mb: 一个Map Task可使用的资源上限(单位:MB),默认为1024。如果Map Task实际使用的资源量超过该值,则会被强制杀死。 (2) mapreduce.reduce.memory.mb: 一个Reduce Task可使用的资源上限(单位:MB),默认为1024。如果Reduce Task实际使用的资源量超过该值,则会被强制杀死。 (3) mapreduce.map.java.opts: Map Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g. “-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc” (@taskid@会被Hadoop框架自动换为相应的taskid), 默认值: “” (4) mapreduce.reduce.java.opts: Reduce Task的JVM参数,你可以在此配置默认的java heap size等参数, e.g. “-Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc”, 默认值: “” (5) mapreduce.map.cpu.vcores: 每个Map task可使用的最多cpu core数目, 默认值: 1 (6) mapreduce.reduce.cpu.vcores: 每个Reduce task可使用的最多cpu core数目, 默认值: 1 //应该在yarn启动之前就配置在服务器的配置文件中才能生效 (7) yarn.scheduler.minimum-allocation-mb 1024 给应用程序container分配的最小内存 (8) yarn.scheduler.maximum-allocation-mb 8192 给应用程序container分配的最大内存 (9) yarn.scheduler.minimum-allocation-vcores 1 (10)yarn.scheduler.maximum-allocation-vcores 32 (11)yarn.nodemanager.resource.memory-mb 8192 //shuffle性能优化的关键参数,应在yarn启动之前就配置好 (12)mapreduce.task.io.sort.mb 100 //shuffle的环形缓冲区大小,默认100m (13)mapreduce.map.sort.spill.percent 0.8 //环形缓冲区溢出的阈值,默认80%
2.容错相关参数
(1) mapreduce.map.maxattempts: 每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。 (2) mapreduce.reduce.maxattempts: 每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。 (3) mapreduce.map.failures.maxpercent: 当失败的Map Task失败比例超过该值为,整个作业则失败,默认值为0. 如果你的应用程序允许丢弃部分输入数据,则该该值设为一个大于0的值,比如5,表示如果有低于5%的Map Task失败(如果一个Map Task重试次数超过mapreduce.map.maxattempts,则认为这个Map Task失败,其对应的输入数据将不会产生任何结果),整个作业扔认为成功。 (4) mapreduce.reduce.failures.maxpercent: 当失败的Reduce Task失败比例超过该值为,整个作业则失败,默认值为0. (5) mapreduce.task.timeout: Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该task处于block状态,可能是卡住了,也许永远会卡主,为了防止因为用户程序永远block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是300000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。
3.本地作业参数
设置以下几个参数: mapreduce.framework.name=local mapreduce.jobtracker.address=local fs.defaultFS=local
4.效率和稳定性相关参数
(1) mapreduce.map.speculative: 是否为Map Task打开推测执行机制,默认为false (2) mapreduce.reduce.speculative: 是否为Reduce Task打开推测执行机制,默认为false (3) mapreduce.job.user.classpath.first & mapreduce.task.classpath.user.precedence:当同一个class同时出现在用户jar包和hadoop jar中时,优先使用哪个jar包中的class,默认为false,表示优先使用hadoop jar中的class。 (4) mapreduce.input.fileinputformat.split.minsize: FileInputFormat做切片时的最小切片大小,(5)mapreduce.input.fileinputformat.split.maxsize: FileInputFormat做切片时的最大切片大小 (切片的默认大小就等于blocksize,即 134217728)