博学谷-数据分析numpy

import numpy as  np

print np.version.version

np.array([1,2,3,4])

np.arange(15)

np.array(range(10))

===============

np.arange(15).reshape(3,5)

[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]

>>> print type(np.arange(15).reshape(3,5))
<type 'numpy.ndarray'>

np.arange(15).reshape(3,5).dtype #数组里面的数据类型

 ==============================================================================

t=np.array([1,2,3,4],dtype=bool)

t.astype("int8")

 

np.round(b,2) #保留2位小数

flatten()展开成一维

 

nan 不是一个数字

inf  无限,无穷的意思

=================================================================

numpy读取数据

np.loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes')

 

  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件。
  • dtype : 数据类型,可选 。
  • delimiter : 分割字符串,默认是任何空格 。
  • usecols:选取数据的列。
  • unpack : 如果True,读入属性将分别写入不同变量 。
  • b = np.loadtxt('a.csv',dtype = np.int,delimiter=',',usecols=(0,1,2))
    
    b
    array([[ 0,  1,  2],
           [20, 21, 22],
           [40, 41, 42],
           [60, 61, 62],
           [80, 81, 82]])
    
    b = np.loadtxt('a.csv',dtype = np.int,delimiter=',',usecols=(2,))
    
    b
    array([ 2, 22, 42, 62, 82])
    
    b = np.loadtxt('a.csv',dtype = np.int,delimiter=',',usecols=(2))
    
    b
    array([ 2, 22, 42, 62, 82])

     

 

numpy存储

np.savetxt(frame,array,fmt='%.18e',delimiter=None,newline='\n', header='', footer='', comments='# ', encoding=None)

 

  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件 。
  • array : 存入文件的数组 (一维或者二维)。
  • fmt:写入文件的格式,例如: %d %.2f %.18e 。
  • delimiter : 分割字符串,默认是任何空格 
import numpy as np

a = np.arange(100).reshape((5,20))

np.savetxt('a.csv',a,fmt = '%d',delimiter=',')

b = np.loadtxt('a.csv',delimiter=',')

b

array([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
        13., 14., 15., 16., 17., 18., 19.],
       [20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32.,
        33., 34., 35., 36., 37., 38., 39.],
       [40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52.,
        53., 54., 55., 56., 57., 58., 59.],
       [60., 61., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72.,
        73., 74., 75., 76., 77., 78., 79.],
       [80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90., 91., 92.,
        93., 94., 95., 96., 97., 98., 99.]])

 

 

 

posted on 2019-02-28 08:48  明觉乃自清  阅读(149)  评论(0编辑  收藏  举报

导航