1 Fork me on GitHub

3. NumPy ndarray对象

1. 前言

NumPy 定义了一个 n 维数组对象,简称 ndarray 对象,它是一个一系列相同类型元素组成的数组集合。数组中的每个元素都占有大小相同的内存块,您可以使用索引或切片的方式获取数组中的每个元素。

ndarray 对象有一个 dtype 属性,该属性用来描述元素的数据类型,相关知识会在《NumPy数据类型》一节做详细介绍 。

ndarray 对象采用了数组的索引机制,将数组中的每个元素映射到内存块上,并且按照一定的布局对内存块进行排列,常用的布局方式有两种,即按行或者按列。

2. 创建ndarray对象

通过 NumPy 的内置函数 array() 可以创建 ndarray 对象,其语法格式如下:

1
numpy.array(object, dtype = None, copy = True, order = None,ndmin = 0)

下面表格对其参数做了说明:

参数说明
序号参数描述说明
1 object 表示一个数组序列。
2 dtype 可选参数,通过它可以更改数组的数据类型。
3 copy 可选参数,表示数组能否被复制,默认是 True。
4 order 以哪种内存布局创建数组,有 3 个可选值,分别是 C(行序列)/F(列序列)/A(默认)。
5 ndim 用于指定数组的维度。


创建一维数组:

1
a=numpy.array([1,2,3])

示例代码:

1
2
3
4
5
6
7
import numpy
a=numpy.array([1,2,3])#使用列表构建一维数组
print(a)
[1 2 3]
print(type(a))
#ndarray数组类型
<class 'numpy.ndarray'>

创建多维数组:

1
b=numpy.array([[1,2,3],[4,5,6]])

示例代码:

1
2
3
4
b=numpy.array([[1,2,3],[4,5,6]])
print(b)
[[1 2 3]
[4 5 6]]

如果要改变数组元素的数据类型,可以使用通过设置 dtype,如下所示:

1
c=numpy.array([2,4,6,8],dtype="数据类型名称")

现在将 c 数组中的元素类型变成了复数类型:

1
2
3
c=numpy.array([2,4,6,8],dtype="complex")
print(c)
[2.+0.j 4.+0.j 6.+0.j 8.+0.j]

array() 是创建 ndarray 对象的基本方法,在后续内容中还会介绍其他方法。

3. ndim查看数组维数

通过 ndim 可以查看数组的维度:

1
2
3
4
import numpy as np
arr = np.array([[1, 2, 3, 4], [4, 5, 6, 7], [9, 10, 11, 23]])
print(arr.ndim)
2

您也可以使用 ndim 参数创建不同维度的数组:

1
2
3
4
#输出一个二维数组
import numpy as np
a = np.array([1, 2, 3,4,5], ndim = 2)
print(a)

输出结果如下:

[[1 2 3 4 5]]

4. reshape数组变维

数组的形状指的是多维数组的行数和列数。Numpy 模块提供 reshape() 函数可以改变多维数组行数和列数,从而达到数组变维的目的。因此数组变维即对数组形状的重塑,如图1所示:

Numpy reshape函数变维
图1:reshape函数数组变维


reshape() 函数可以接受一个元组作为参数,用于指定了新数组的行数和列数,示例如下:

1
2
3
4
5
import numpy as np
e = np.array([[1,2],[3,4],[5,6]])
print("原数组",e)
e=e.reshape(2,3)
print("新数组",e) 

输出如下:

原数组 [[1 2]
[3 4]
[5 6]]
新数组 [[1 2 3]
[4 5 6]]

 

 

posted @   v_jjling  阅读(122)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 【杂谈】分布式事务——高大上的无用知识?
AmazingCounters.com
点击右上角即可分享
微信分享提示