1 Fork me on GitHub

1. NumPy是什么

1. 前言

NumPy 的全称是“ Numeric Python”,它是 Python 的第三方扩展包,主要用来计算、处理一维或多维数组。

在数组算术计算方面, NumPy 提供了大量的数学函数。NumPy 的底层主要用 C语言编写,因此它能够高速地执行数值计算。NumPy 还提供了多种数据结构,这些数据结构能够非常契合的应用在数组和矩阵的运算上。

NumPy图标


NumPy 的前身是 Numeric 程序包,该包由 Jim Hugunin 开发,在这之后,他还开发了另一个类似的的程序包 Numarray,相比前者而言 Numarray 具有更加全面的功能 。在 2005 年,Travis Oliphant 通过整合 Numarray 与 Numeric 软件包的功能,从而集成了 NumPy。NumPy 的最新版本 1.19.2 已于 2020 年 9 月10 日发布。

NumPy 作为一个开源项目,它由许多协作者共同开发维护,这也是 NumPy 的优势之一。

2. NumPy使用需求

随着数据科学(Data Science,简称 DS,包括大数据分析与处理、大数据存储、数据抓取等分支)的蓬勃发展,像 NumPy、SciPy(Python科学计算库)、Pandas(基于NumPy的数据处理库) 等数据分析库都有了大量的增长,它们都具有较简单的语法格式。

在矩阵乘法与数组形状处理上,NumPy 有着非常不错的性能,再加上 NumPy 的计算速度很快,这些都是 NumPy 成为一款数据分析工具的重要原因。

数组形状可以理解为数组的维度,比如一维数组、二维数组、三维数组等;以二维数组为例,改变数组形状就是交换数组的行和列,也即将数组旋转 90 度。

NumPy 可以很便捷高效地处理大量数据,那么使用 NumPy 做数据处理有哪些优点呢?总结如下:

  • NumPy 是 Python 科学计算基础库;
  • NumPy 可以对数组进行高效的数学运算;
  • NumPy 的 ndarray 对象可以用来构建多维数组;
  • NumPy 能够执行傅立叶变换与重塑多维数组形状;
  • NumPy 提供了线性代数,以及随机数生成的内置函数。

3. NumPy应用场景

NumPy 通常与 SciPy(Python科学计算库)和 Matplotlib(Python绘图库)等软件包组合使用,这种组合方式被用来广泛地代替 MatLab 的使用。

MatLab 是一款强大的数学计算软件,广泛应用在数据分析、电子通信、深度学习、图像处理、机器视觉、量化金融等领域,但近些年随着 Python 语言的迅猛发展,Python 被看作是一种更适合代替  MatLab 的编程语言。您可以使用 NumPy、SciPy 与 Matplotlib 等 Python 工具包搭建科学计算环境,比如 Anaconda 就是是一个开源的 Python 发行版本,它包含了 Python 、NumPy 等 180 多个科学包及其依赖项。

因为 NumPy 是 Python 的扩展程序包,所以您在学习 NumPy 之前应该具备一些 Python 基础知识,这对本教程的学习将大有裨益。如果您想了解关于 NumPy 更多的知识可浏览 NumPy 官网(https://numpy.org/)。

posted @ 2022-09-22 15:18  v_jjling  阅读(118)  评论(0编辑  收藏  举报
AmazingCounters.com