将tensorflow的ckpt转换为pb
from tensorflow.python import pywrap_tensorflow
import tensorflow as tf
from tensorflow.python.framework import graph_util
'''
将节点名字打印出来
'''
def getAllNodes(checkpoint_path):
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
# Print tensor name and values
for key in var_to_shape_map:
print("tensor_name: ", key)
#print(reader.get_tensor(key))
def freeze_graph(ckpt, output_graph):
#输出节点的名称,最直观的是从tensorboard里读,一般就是最后输出的节点,例如这里就是输出accuracy的节点
output_node_names = 'FrameAccuracy/Cast'
# saver = tf.train.import_meta_graph(ckpt+'.meta', clear_devices=True)
saver = tf.compat.v1.train.import_meta_graph(ckpt + '.meta', clear_devices=True)
graph = tf.get_default_graph()
input_graph_def = graph.as_graph_def()
with tf.Session() as sess:
saver.restore(sess, ckpt)
output_graph_def = graph_util.convert_variables_to_constants(
sess=sess,
input_graph_def=input_graph_def,
output_node_names=output_node_names.split(',')
)
with tf.gfile.GFile(output_graph, 'wb') as fw:
fw.write(output_graph_def.SerializeToString())
print('{} ops in the final graph.'.format(len(output_graph_def.node)))
'''
把pb文件的节点读出来
'''
def print_tensors(pb_file):
print('Model File: {}\n'.format(pb_file))
# read pb into graph_def
with tf.gfile.GFile(pb_file, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# import graph_def
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def)
# print operations
for op in graph.get_operations():
print(op.name + '\t' + str(op.values()))
'''
从ckpt中读取图结构,输出可以被tensorboard读取的图文件
'''
def showNetFromCkpt(path):
from tensorflow.python.platform import gfile
graph = tf.get_default_graph()
graphdef = graph.as_graph_def()
_ = tf.train.import_meta_graph(path)
#tensorboard的图文件输出的位置
#使用tensorboard --logdir=E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\graph 进入tensorboard
summary_write = tf.summary.FileWriter("E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels", graph)
summary_write.close()
if __name__ == '__main__':
#注意这里的path必须是绝对路径!!
ckpt_path='E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\save_epoch_38\\ViolenceNet.ckpt'
#读取图文件,读完了就注释了就行,把输出节点写到上面的freeze_graph函数里
#showNetFromCkpt(ckpt_path+".meta")
#getAllNodes(ckpt_path)
#将ckpt转换为pb,这里写pb的路径,也必须是绝对路径
output_graph_path='E:\\MachineLearningProjects\\ViolentDetection_JD\\savedModels\\ViolenceNet.pb'
freeze_graph(ckpt_path,output_graph_path)
#将Pb文件的节点打印出来,看看有没有问题
print_tensors(output_graph_path)
参考文献:
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架