A Dangerous Maze (II) LightOJ - 1395(概率dp)

A Dangerous Maze (II) LightOJ - 1395(概率dp)


这题是Light Oj 1027的加强版,1027那道是无记忆的。
题意: 有n扇门,每次你可以选择其中一扇。xi为负值的门带你abs(xi)后又回到原点。xi为正值
的门则带你离开迷宫,并且你会记住你前面选择的K道门,在下次选择的时候不会选择这些门。选择每扇门的概率相等。求走出迷宫的时间期望值。

题解:
\(定义E[i] 表示记住了K道门后,显然这K道门都是为负值的门,走出迷宫的时间期望值,sum1表示为正的时间的和,sum2表示为负的时间的和,cnt表示为负的时间的个数\)
首先\(K = min(cnt,K)\)
若K == cnt,那么E[K]就相当于从正值门中随便选一道出去即可 $$E[K] = \frac{sum1}{n-cnt}$$
否则$$E[K] = \frac{sum1}{n-K} + \frac{\sum{(T负)}+(cnt - K) \cdot E[K]}{n - K}$$
对于0 <= i < K 则有 $$E[i] = \frac{sum1}{n - i} + \frac{\sum{(T负)}+(cnt - i) \cdot E[i+1]}{n - i}$$

\(\sum{(T负)}的意思是 在已经走过了K道负值门之后,再选择cnt - K道负值门的时间的和\)
但是前面的选择的K道负门 具体是怎样的我们并不知道,该怎么求呢

再来一个问题假设有n个数,先选K个数,在从剩下的数里面选择一个数的平均值是多少呢?

答案其实就是n个数的平均值
n个数先选K个再选,可以等价于先从n个中选n-K个,再选一个
考虑每个数的贡献,选完某个数,然后就从剩下n-1个中选n-k-1个呗
平均值就等于 $$\frac{\frac{1}{n-k} \cdot C(n-1,n-k-1) \cdot \sum{a_i} }{C(n,n-k)} = \frac{\sum{a_i}}{n} $$

于是$$\sum{T负} = \frac{\sum{a_负}}{cnt} \cdot (cnt - i) $$

将上式代入E[K],cnt != K那个式子化简后可得

\[E[K] = \frac{sum1}{n - cnt} + \frac{sum2 \cdot (cnt - K)}{cnt \cdot (n - cnt)} \]

从后往前推 E[0]就是答案,注意特判cnt = n时永远无法逃出迷宫,输出-1

#include<bits/stdc++.h>
#define LL long long
using namespace std;

int main()
{
    int T, cas = 1;
    cin>>T;
    while(T--){
        int n, K;
        scanf("%d%d",&n,&K);
        int cnt = 0,sum1 = 0,sum2 = 0, x;
        for(int i = 0;i < n;i++){
            scanf("%d",&x);
            if(x > 0) sum1 += x;
            else sum2 += -x,cnt++;
        }

        printf("Case %d: ",cas++);
        if(cnt == n) {
            printf("-1\n");
            continue;
        }
        K = min(cnt,K);
        double ans = 0;
        if(cnt == K) ans = sum1 / 1.0 / (n - cnt);
        else ans = sum1 / 1.0 / (n - cnt) + sum2 * 1.0 * (cnt - K) / cnt / (n - cnt);
        for(int i = K - 1;i >= 0;i--) {
                ans = sum1 * 1.0 / (n - i) + (sum2 * 1.0 / cnt + ans) * (cnt - i) / (n - i);
        }
        printf("%.12f\n",ans);
    }
    return 0;
}
posted @ 2017-07-20 11:12  jiachinzhao  阅读(413)  评论(0编辑  收藏  举报