lettcode 上的几道哈希表与链表组合的数据结构题
lettcode 上的几道哈希表与链表组合的数据结构题
下面这几道题都要求在O(1)时间内完成每种操作。
LRU缓存
LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间 t,当须淘汰一个页面时,选择现有页面中其 t 值最大的,即最近最少使用的页面予以淘汰。
做法:
-
使用先进先出的队列,队尾的元素即是可能要淘汰的。
-
由于需要查找某个key在队列中的位置,需要一种数据结构快速定位,并且快速删除。
-
使用链表来实现队列的功能,同时使用哈希表记录每个key对应的链表结点。
-
可以手写一个双向哈希链表,也可以使用c++ std库中的list+unordered_map来代替。
typedef struct Node
{
int key;
int value;
Node *prev;
Node *next;
Node(int k, int v):key(k), value(v), prev(NULL), next(NULL){}
}Node;
class HashDoubleLinkList
{
private:
int size;
Node *head;
Node *tail;
unordered_map<int, Node*> key_dict;
public:
void init(){
key_dict.clear();
size = 0;
head = newNode(0,0);
tail = newNode(0,0);
head->next = tail;
tail->prev = head;
}
int getsize() { return size; }
Node *newNode(int k,int v){
return new Node(k, v);
}
//find node by key, if key not exist, return NULL
Node *find(int key){
auto it = key_dict.find(key);
if(it == key_dict.end()) return NULL;
return it->second;
}
//remove node by key, if key not exist, return NULL
Node* removekey(int key){
Node *node = find(key);
if(!NULL) return NULL;
remove(node);
return node;
}
//remove node
void remove(Node *node){
node->prev->next = node->next;
node->next->prev = node->prev;
key_dict.erase(node->key);
size--;
}
//pop the last element in list
Node* pop_back(){
if(size <= 0) return NULL;
size--;
Node *node = tail->prev;
node->prev->next = tail;
tail->prev = node->prev;
key_dict.erase(node->key);
return node;
}
//pop the first element in list
Node* pop_front(){
if(size <= 0) return NULL;
size--;
Node *node = head->next;
head->next = node->next;
node->next->prev = head;
key_dict.erase(node->key);
return node;
}
//insert before first element in list
void push_front(Node *node){
head->next->prev = node;
node->next = head->next;
head->next = node;
node->prev = head;
size++;
key_dict[node->key] = node;
}
//insert after last element in list
void push_back(Node *node){
node->next = tail;
node->prev = tail->prev;
tail->prev->next = node;
tail->prev = node;
size++;
key_dict[node->key] = node;
}
};
class LRUCache {
int cap;
HashDoubleLinkList dl;
public:
LRUCache(int capacity) {
cap = capacity;
dl.init();
}
int get(int key) {
Node *node = dl.find(key);
if(node == NULL) return -1;
dl.remove(node);
dl.push_front(node);
return node->value;
}
void put(int key, int value) {
Node *node = dl.find(key);
if(node == NULL){
if(dl.getsize() == cap){
dl.pop_back();
}
dl.push_front(new Node(key, value));
}else{
dl.remove(node);
node->value = value;
dl.push_front(node);
}
}
};
LFU缓存
LFU是Least Frequency Used的缩写,即最少使用次数,次数相等时即等同于LRU缓存。每次选择访问次数最少的页面予以淘汰,若存在多个次数最少的页面,选择访问时间最远的页面淘汰。
做法:
- 将访问次数相同的元素丢到一个链表中,这个链表的操作就跟LRU缓存一样了。
- 用哈希表记录次数对应的链表, key对应的链表结点,和key对应的访问次数和值。
使用了三个哈希表+一个链表,LFU缓存比较耗费内存。
class LFUCache {
int cap;
int minFreq;
unordered_map<int, list<int> > FreqKey;
unordered_map<int, pair<int,int> > KeyFreqAndValue;
unordered_map<int, list<int>::iterator> FreqKeyIter;
private:
public:
LFUCache(int capacity) {
cap = capacity;
minFreq = 1;
}
int get(int key) {
auto fv = KeyFreqAndValue.find(key);
if(fv == KeyFreqAndValue.end()) return -1;
FreqKey[fv->second.first].erase(FreqKeyIter[key]);
fv->second.first++;
if (FreqKey.find(fv->second.first) == FreqKey.end()){
FreqKey[fv->second.first] = list<int>();
}
FreqKey[fv->second.first].push_front(key);
FreqKeyIter[key] = FreqKey[fv->second.first].begin();
if(FreqKey[minFreq].empty()) minFreq++;
return fv->second.second;
}
void put(int key, int value) {
if(cap <= 0) return ;
if(get(key) != -1){
KeyFreqAndValue[key].second = value;
return ;
}
if(KeyFreqAndValue.size() == cap){
int pop_key = *FreqKey[minFreq].rbegin();
KeyFreqAndValue.erase(pop_key);
FreqKeyIter.erase(pop_key);
FreqKey[minFreq].pop_back();
}
minFreq = 1;
FreqKey[1].push_front(key);
KeyFreqAndValue[key] = make_pair(1, value);
FreqKeyIter[key] = FreqKey[1].begin();
}
};
全O(1)的数据结构
这道题有四种操作
- Inc(key) - 插入一个新的值为 1 的 key。或者使一个存在的 key 增加一,保证 key 不为空字符串
- Dec(key) - 如果这个 key 的值是 1,那么把他从数据结构中移除掉。否者使一个存在的 key 值减一。如果这个 key 不存在,这个函数不做任何事情。key 保证不为空字符串。
- GetMaxKey() - 返回 key 中值最大的任意一个。如果没有元素存在,返回一个空字符串""。
- GetMinKey() - 返回 key 中值最小的任意一个。如果没有元素存在,返回一个空字符串""。
做法:
- 这里的O(1)应该是不包括计算key的哈希值的时间的。
- 双向链表将值从小到大串连起来, 链表中每个结点维护一个哈希表存储所有值相同的key,
- 维护一个哈希表记录值在链表中对应的结点,一个哈希表记录key对应的值
- 求值最大/最小的key就是求链表的首尾即可。
class AllOne {
unordered_map<string, int> values;
unordered_map<int, list<unordered_set<string>>::iterator> count_iter;
list<unordered_set<string> > count_keys;
public:
/** Initialize your data structure here. */
AllOne() {
values.clear();
count_iter.clear();
count_keys.clear();
}
void remove(list<unordered_set<string>>::iterator iter, string key, int value){
(*iter).erase(key);
if((*iter).empty()){
count_iter.erase(value);
count_keys.erase(iter);
}
}
/** Inserts a new key <Key> with value 1. Or increments an existing key by 1. */
void inc(string key) {
auto it = values.find(key);
if(it == values.end()){
values[key] = 1;
if(count_iter.find(1) == count_iter.end()){
count_keys.push_front({key});
count_iter[1] = count_keys.begin();
}else{
(*count_iter[1]).insert(key);
}
}else{
int value = it->second;
//update values
it->second++;
//update value + 1
auto iter = count_iter[value];
iter++;
if (count_iter.find(value + 1) == count_iter.end()){
count_iter[value + 1] = count_keys.insert(iter, {key});
}else{
(*iter).insert(key);
}
//delte value
remove(count_iter[value], key, value);
}
}
/** Decrements an existing key by 1. If Key's value is 1, remove it from the data structure. */
void dec(string key) {
auto it = values.find(key);
if(it == values.end()) return ;
int value = it->second;
//update values
it->second--;
//update value - 1
auto iter = count_iter[value];
if(it->second == 0){
values.erase(key);
}else{
if (count_iter.find(value - 1) == count_iter.end()){
count_iter[value - 1] = count_keys.insert(iter, {key});
}else{
(*count_iter[value - 1]).insert(key);
}
}
remove(iter, key, value);
}
/** Returns one of the keys with maximal value. */
string getMaxKey() {
if(count_keys.empty()) return "";
return *(count_keys.back().begin());
}
/** Returns one of the keys with Minimal value. */
string getMinKey() {
if(count_keys.empty()) return "";
return *(count_keys.front().begin());
}
};
/**
* Your AllOne object will be instantiated and called as such:
* AllOne* obj = new AllOne();
* obj->inc(key);
* obj->dec(key);
* string param_3 = obj->getMaxKey();
* string param_4 = obj->getMinKey();
*/