AwarenessLayer-软件架构设计
| 熵控层 |
相对数据层栗子 |
如果说AINet是手机硬件,那么AwarenessLayer则是手机软件系统; |
作用栗子 |
其在smg软件架构中的作用;就像以往软件编程里编译器的角色;但其不能够将所有数据进行编译,也不能够将逻辑编译为确定 |
注: |
意识如此神秘,在本系统中似乎无处不在,但却又无迹可循,就像与我们捉迷藏一样,无论你如何深入的思考,意识总是那么神秘,本章只能够以软件架构技术的方式来设计与实施 |
是否具有意识? |
不确定:如果说有,只是会表现出有意识的样子,如果说没有,那是因为我们从来就不曾真正了解意识; |
n8p1 AwarenessLayer软件架构初想法
CreateTime 17.10.21
前言:
主要讲AwarenessLayer中的控制性,软件架构的实现和灵活编程方案;
定义:
1. smg中意识定义:
关于意识无明确定义,因为没有研究明白前无法确切定义;
在smg中意识包含:`思维`,`智能`等所有smg主观性的体现;
相当于AwarenessLayer中的代码引擎(众控制器的组合);
2. smg中智能定义:
在smg中智能是以数据广泛性为基础的,
3.smg中的思考定义:
思考是思维在神经网络具体事务上的体现
-
智能与意识紧密关联:
如果没有意识,智能如散沙;
-
智能的作用:
智能给DNA瘦身,给本体通用性熵减能力;
两个原则:
1. 保证数据的灵活性;无论是接入思维还是意识或其它功能;
2. 保证awarenessLayer层的控制协调功能;而控制器的功能要分模块化;用接口的方式接入,并自动作用起来;
Controller
1. 控制Demand/Task的持续性
2. 控制情感的持续性MindDurationManager
3. 控制主意识思维的事务同时单一控制器(一心一用)
4. 对当前自我感受状态的紧迫性HungerLevel<0.1f
5.
| title | desc | 参考 |
1 |
流式 |
通过面向对象的方式定义Understand,Decision,Mind等 |
初版代码(已删) |
2 |
代码及算法方式 |
用代码定义,函数算法输出结果 |
代码结构中.(部分已删) |
3 |
控制器方式 |
用控制器方式,分隔每层的功能,并熵减无序因素 |
#n8p6 #n8p11 |
4 |
规则化 |
定义规则,使无序看似有序,但又大多被 数据 影响着,善用数据的灵活及无限 |
#n8p13 #n8p17 |
| title | desc |
1 |
思考问题: |
用不用将数据逻辑层 与 代码层 明确分开 |
2 |
思考问题: |
需要不需要通用数据模型,方便思维分析操作 |
| desc |
1 |
人脑是软硬一体的,cpu硬盘内存与一体 |
2 |
电脑cpu内存硬盘是分离的,所以在SMG设计上必须思考这种异同,来设计smg软件架构 |
n8p2 意识真实的感受2-(想像力/逆向演绎)
CreateTime 17.10.22
脑: 前额叶
参考: n5p5
前言:
思维再面向纯抽象节点时是无法思考的;所以具象问题如下:
例如我们在选择红苹果好吃还是绿苹果好吃时,如果只是思考红色和绿色哪个好吃;
所以必须先行逆向演绎成红苹果和绿苹果,再来比较;
逆向演绎是将抽象节点指向实体obj节点的其它属性收集过来并有机结合的过程;此过程就是为了方便思维的思考元类比操作;所以有以下步骤: |
| desc |
1 |
前额叶(向丘脑发起联想事务) |
2 |
丘脑(Data事务控制器) |
3 |
大脑(配合海马回和网络找到数据并返回) |
4 |
前额叶(数据接收) |
| desc |
1 |
根据某抽象高层节点找到obj |
2 |
根据obj点亮其它属性节点 |
3 |
将所有obj相关节点进行有机结合(可能这种有机只是划分区域边界) |
4 |
将所有边界内数据用于类比等; |
| desc |
1 |
只是想像力,区域点亮取出信息,类比;(简) |
2 |
取出信息后要整合;(中) |
3 |
整合后,要内识别理解具象的数据;(难) |
4 |
而理解具象数据其实也就是理解它的属性等抽象节点;(循环) |
注: |
有可能思考过程中,只是多连续事务的控制过程;直到思考任务结束,都算是联想和逆向演绎阶段; |
问: |
理解,只是区域点亮相关数据,作数据关联映射;使经验跑进来;还是真的存在具象理解;4中循环在时候中止; |
| desc |
问: |
逆向演绎究竟存在不存在?或者说是否只是找到低节点后,read其属性的操作; |
答: |
存在,属性之类的关联易整合,但很多无关联的(如空间等复杂信息);想像力整合非常重要 |
| desc |
1 |
字符串逆向演绎 |
2 |
音频逆向演绎 |
3 |
视频逆向演绎 |
4 |
空间逆向演绎 |
5 |
时间逆向演绎 |
注: |
任意一种会联想到其它; |
注: |
想像力的演绎规则全部都是常识数据决定的。 |
步骤 | desc |
1 |
到节点是第一次数据融合 |
2 |
到obj是第二次数据融合 |
3 |
到区域是第三次融合 |
4 |
到多区多维是第四次融合 |
参考 |
n8p12 |
1. 将各种数据进行联想检索的能力;
2. 将各种数据进行想像融合的能力;(融合规则)
3. 将融合后的数据,演绎给大脑,或者是新的关联与节点数据存储;
![]() |
1. 蓝色:思维走向; |
2. 左侧:神经网络构建流程; |
n8p3 精简意识控制器
CreateTime 17.10.22
参考:
n4p7 & n4px
原始意识控制器:
无,潜,有三种意识状态同时存在,互相共享数据合作。
1. 无意识:对应后台耗时任务 & 小脑任务;
2. 潜意识:对应未获取到注意力之前的任务;
3. 有意识:对应意识注意力思维思考等偏后行为;
精简意识控制器:
1. 只存在潜过度到有意识的合作任务;(后台耗时任务 & input持续任务 都归到潜意识)
2. 最大的问题来自意识的灵活性;(随心所欲)
精简意识控制器_有意识的特征:
1. 主线程同时执行一件思考任务
2. 注意力
3. 后天写权限
n8p4 SMG软件架构
CreateTime 17.10.22
示图:
![]()
n8p5 事务控制器
CreateTime 17.10.23
脑: 丘脑
参考:
N6P4 N5P6
前言:
| desc | result |
1 |
事务控制器,灵活的控制了AwarenessLayer对DataLayer的操作; |
应更细化;(参考:n9p4) |
2 |
需与意识合作,因为事务本身只负责区域点亮及其它事务执行,而不知道其结果是否中意; |
错误;事务结果传闻给ThinkingRule |
3 |
事务接口:(执行 & 添加 & 打断 & 驳回 & Success & Error & Failure 等) |
错误;事务结果传闻给ThinkingRule |
4 |
调用:(区域点亮调用,带方向的区域点亮调用,电量参数,是否可转为后台长时参数); |
|
5 |
思维抽象事务; |
|
| desc |
能量位 |
增加抑制信号集成到事务控制器中... |
| | desc |
1 |
|
去掉电能量的设计;换成 抑制 和 兴奋 ; |
2 |
|
所以思维,是在每个DataNode神经元点亮时已经在跟着工作了,而非全部取完,作统一类比;这样的好处是: |
|
2.1 |
大大提高区域点亮的效果; |
|
2.2 |
可以更智能灵活的控制整个区域点亮的过程; |
|
2.3 |
可以尽可能少的减少不必要的点亮与思维,性能更优化; |
n8p5 AwarenessLayer软件架构初想法2
CreateTime 17.10.24
前言:
1. AwarenessLayer是引擎,SMG的CPU;
2. AwarenessLayer是事务控制器,
3. AwarenessLayer是重转站,大脑循环站;
4. ControllerLayer引擎,大脑的cpu;
结构:
链式结构;每一节点都是控制器;分类器;决定下一站到哪;作什么事务;
1. input
2. 数据传递到:AwarenessLayer意识判断(此时,虽然不知道数据是什么,但可以判断`来源` 和 `数据量`)
3. 数据传递到神经元FuncLayer
4. 处理后输出给AINet
5. 由 `丘区` (mindValue)指引数据成长方向;
1. `桥区` 产生Demand 与 输入信息
2. 由输入信息到AINet检索经验作区域点亮等操作;
3. 事务控制器控制思维;在AINet中作类比等操作;
4. 思维控制器决策
5. 思维控制器将结果(一组输出值)返回给 `桥区` 的OutputController
n. output
n8p6 LOP2
CreateTime 17.10.24
![]()
1. 算法层负责生产数据 和 其它控制器取值打辅助;
2. 数据层负责一切智能活动,等等参考前文神经网络;
3. ControllerLayer负责控制整个过程有序进行;
LOP2的概述
其实人类的大脑也是几乎这样的模型;是个强化版的MVC;并且特别是Model层;(即神经网络)将很多Controller的功能作到Model中了;所以表现出了非常好的通用性灵活性和智能;
LOP2的主要目的
我提出LOP的方式;最主要其实就两个目的;
1. 让人们将OOP忘掉;将OOP中的那些理念回归到数据中..
2. 让人们更加重视DataLayer层;因为数据带来的泛化能力和灵活性是前所未有的;
3. 让Controller的和思维类比等配合下,代码逻辑源于数据;
n8p7 意识思维与神经网络融合
CreateTime 17.10.24
1. 融合,不止是事务与controller,其意义是意识思维与神经网络一起成长。
2. 即数据即思维升级,数据即意识升级;
n8p8 先天MindValue
CreateTime 17.11.16
脑: 中脑
| desc | 参考 |
|
本能行为反射,如下: |
|
1 |
远离恐惧源 |
|
2 |
重复快乐行为 |
n8p9 |
| title | desc |
1 |
mindVaue能否被存储? |
(应该会存储自我的mindValue快乐状态,mindValue具有影响构建和可数据表示二象性,mindValue原本不是一条数据,但因被自我状态感知了,才变成数据) |
2 |
快乐状态 |
心情结合条件反射(例如心慌的感觉,如果没有惊慌难以感知到自身状态) |
title | desc |
概念 |
五感有些会附加mindValue+-; |
实现 |
AINETEditor添加内感刺激mindValue释放功能。再外加配置一个算法曲线。 |
废弃 |
没有先天mindValue都是思维调用后释放的。 |
n8p9 后天MindValue
CreateTime 17.10.26
对脑: 理性杏仁核/非理性垂体
参考:
框架/Mind#MoodDuration心情持续 Book心情持续
| desc |
1 |
意识思维通过MindValue的方式与AINet紧密合作,是数据的活跃剂,构建期监工,也是意识与数据的桥;让意识由神经反射升级成持续意识; |
| desc |
1 |
mindValue在AINet中作用是指引成长方向;(与2为或关系) |
2 |
或 mindValue是生长因子,一切构建关联由其生长。例如:记错颜色为同时出现物混乱(与1为或关系) |
3 |
mindValue在意识中作用是将神经反射作为持续的欲望或需求; |
title | desc |
概念 |
后天是对已有的复习和增强, |
实现 |
在AIThinkingRule中分析提纯数据,并向mindValue工厂申请释放新mindValue信号(构建因子); |
新mindValue信号的功能;
| desc |
概念 |
MoodDurationManager属于丘区垂体;mindValue功能体现之一; |
作用 |
MoodDurationManager解决了mindValue的持续性问题 |
MoodDurationManager工作流程 >> |
步骤 | desc |
1 |
持续内感受到 mindValue-; |
2 |
AINet无记录时的手足无措, |
3 |
有记录时则促使smg去解决mindValue-的问题; |
| ![]() |
脑对应: |
思维控制器-前额叶 AINet-神经网络数据部分 后天MindValue-杏仁核海马体 先天MV-中脑 |
黑线脑 |
五感->脑干->丘脑->皮层 |
黑线软 |
input->main()->潜意识->AINet |
n8p10 知识表示X
CreateTime 17.10.31
神经元逆向算法(错误)
Input写
->神经元算法
->思维分析结果
->二进制存储
二进制读取
->神经元逆向算法
->思维类比分析
->Output读
1. Gan逆向算法一一对应正向神经元算法。(错误)
2. AINet的节点数据是二进制,只有逆向算法后,才是节点整体信息。(错误)
3. 存在与否?
应该不存在,数据的实物与属性,具象与抽象的关系应该是存在神经网络中...
思维对知识读取流程
1. 区域点亮
2. 节点数据读取
3. 节点数据的整体复合(复合参考:n8p2)
4. 成为完整的想象力事务。
神经网络数据的单一性
1. 神经网络只存算法结果(不存mp4mp3)
2. 只强化思维结果的关联
神经网络数据的破单一性
1. 神经网络通过mindValue与深入思维(冥想)整理,
使事物抽象与本质产生关联;
将看似均匀的可能性,导向更正确的关联可能性;
数据整理过程图: |
![]() |
1. 黑线:obj与property之间的关联; |
2. 黄线:obj与p4之间产生强关联;(与深入思维后mindValue123三层的继承有关) |
3. 绿线:本来p4或obj与mindValue1的相关 |
4. 蓝线:本来mindValue1 与 mindValue2 mindValue3的相关 |
注: 冥想或思维只是强化关联 |
注: 深入思维只是描述了思维的层级,并非单纯围绕外围世界展开,而是围绕任意层次节点展开 |
n8p11 ControllerLayer
CreateTime 17.11.01
| 控制器 | 生命周期 | 主任务demand | IO | 参考 |
1 |
main() |
|
|
|
main() |
2 |
SMG类 |
|
|
|
update() |
1 |
意识控制器 |
|
|
|
rootController & pageController |
2 |
思维控制器 |
构造 析构 |
|
|
n8p13 & controller |
3 |
AINet事务控制器 |
|
|
|
数据交互 |
n8p12 拆分与融合
CreateTime 17.11.02
| 拆融任务 | 实现方式 |
数据IO事务拆分组 |
|
|
1 |
数据拆分 |
思维 |
2 |
数据融合 |
区域点亮->联想->想像力 |
思维组 |
|
|
1 |
思维拆分 |
意识控制器 |
2 |
思维融合 |
用AINet数据融合代替 |
n8p13 思维控制器
CreateTime 17.11.02
脑: 前额叶
| 功能 | 脑功能 | 合作 | 参考 | 注 |
1 |
数据拆分 |
分析 |
|
|
|
2 |
构建后天网络 |
操作 |
|
|
|
3 |
数据IO事务(联想事务) |
思考 |
与丘脑合作 |
|
|
4 |
想像力事务 |
判断 |
|
|
|
5 |
可持久化存储 |
记忆 |
|
|
意识流,经验,逻辑,等; |
6 |
决策 |
|
|
|
|
7 |
决策被先天干扰部分 |
|
|
n8p19 |
|
| | |
1 |
init:(id)task; |
task是由意识控制器 提交过来的任务 `1.任务源:神经网络的数据 2. 任务目标:(一个mindValue方向 |
2 |
initData |
|
3 |
initRun |
|
4 |
think |
|
![]() |
1. 思维只有1个 |
2. 思维有3个线程(主线程,非主线程,后台线程) |
注: 蓝色:双箭头表示一个联想事务,其影响着思维的任务及走向; |
注: 主意识:占有着注意力,可写权限,想像力逆向演绎,等;有大多资源调配力,其特征也是多变灵活的; |
| 软件实现 | 参考 |
1 |
思维与无意识思维合作 |
n8p19 |
title | desc |
简介 |
复杂的现实无法推演,所以数据成了分析的唯一标准。想像力与演绎是思维的唯一出路。 |
步骤 | title | desc | 参考 |
1 |
Task |
task来自:1. mindValue归0; 2. 五感需求 3. 情感 |
n8p19 |
2 |
取数据 |
AINet是思维的养料,有了事务管理器在AINet取到N次数据,进入步骤3 |
n8p2 大脑步骤 & n8p15-想像力 |
3 |
数据融合 |
有了步骤2的数据,在思维中融合;进入步骤4 |
n8p15 想像力 |
4 |
分析 |
一切的融合只是为了分析,进入步骤5 |
|
5 |
决策 |
234步为灵活循环n次,最终决策; |
|
n8p14 意识控制器
CreateTime 17.11.03
| 功能 | code |
1 |
维护一个意识主线程; |
mainThread_Awareness |
2 |
主线程分配100百分比占用; |
CGFloat busyStatus |
method |
|
|
1 |
判断潜意识准入 |
-(BOOL) checkShallow{} |
2 |
判断注意力获取 |
-(BOOL) checkDeep{} |
n8p15 想像力
CreateTime 17.11.07
脑: 前额叶+海马回
参考:
当下不开发的/想像力 & n5p5意识真实的感受_二阶-想像力 & n6p2 感受 & n8p2 意识真实的感受2-(想像力/逆向演绎) & SMG/类人的学习项目 想像力,把图像属性,甚至文本描述GAN成图像演绎;
引言
/*
被窝好暖和,继续睡?起床?是个问题,大脑想起,身体想睡,眼睛闭着,脑袋意识清醒。
大脑思维那么快,但两者任务在controller里pk了半小时,
暖和的感觉是当下持续的mindValue+,起床后的任务是未来的mindValue+,
如果只是简单的执行思维思考,智能体将局限与经验量化智能,
但想像力足以变异思维控制器,智能体才可以升华出智慧。
一项我们天天在有意无意间使用的能力,却十分重要,让生命的体现都如此不同。
*/
| title | desc |
1 |
简介 |
想像力在SMG中是代码能力 ,其融合一个或多个联想 事务;并通过思维将其逆向演绎 |
2 |
通俗简介 |
Decoding能力(将data转为model的能力) |
3 |
特征 |
整个过程是 有序 , 灵活 的,体现为: 思维想到什么追加什么 |
4 |
描述 |
我们的思维如此快,当你读到 一朵花 时,你的思维已经想像出一朵漂亮的花呈现在大脑中.. |
5 |
作用 |
想像力是帮助读取数据的,没有想像力,数据将难以被主观意识读懂; |
6 |
工作状态 |
想像力,将当前思维的相关缺失数据以常识等方式补全,并构建新的关联 |
7 |
maybe |
将非全面数据的补全机制(将数据构建关联至抽象节点之下最强关联的具象节点) |
8 |
联想对比想像 |
1. 先联想后想像 2. 联想先读内整数据,想像再追加外碎常识数据 3. 联想是AINet单Data事务,想像是多事务与解读数据 |
title | desc |
1. Controller部分 |
思维控制器,Data事务控制器,想像力演绎器 |
2. AINet部分 |
空间区,时间区,等;及负责服务整个功能所需数据; |
![]() |
1. 想像负责多Data事务;每个事务产生一个 分联想 |
2. 思维想到什么追加什么 |
注: 小红色圆:AINode |
注: 大红色圆:区域点亮范围 |
n8p16 config_接口_后台
CreateTime 17.11.08
| title | desc |
1 |
简介 |
1. 配置生理或者心理需求,快乐等情感; 2. 接入传感器,肢体等外设 |
n8p17 AwarenessLayer的规则
CreateTime 17.11.10
| title | desc |
1 |
简介 |
在思维对数据分析时...有限的规则影响着意识与思维的走向; |
| title | desc |
1 |
意识的规则 |
主意识的busy状态,潜和无转向主意识的规则,及n8p12中的权限规则 |
2 |
思维的规则 |
基础类比操作 + 数据影响走向 + 想像力演绎真实感 + NET构建规则 + DemandTask规则 + 3种思维的权限规则 |
3 |
Data事务规则 |
区域点亮 + 多维分区间规则 + 后台任务规则 |
4 |
Input规则 |
|
5 |
Output规则 |
|
1. 意识规则:定义了意识的三种`运行方式`源定义;其定义了cpu资源的三个线程;
* 主意识注意力;
* 潜意识readData与input触发运行;(潜意识是主意识的门卫,缓冲区)
* 无意识任务(意识中断,代理回调碰撞)
2. 思维规则:定义了cpu的`运算规则`;其本身也是思维规则,受数据影响其航向;
* 想像力;
* DemandTask的规则;
* 思维的持久化(意识流)(90%不单独存在)
3. 数据规则:定义了神经网络的构建,使用等方法;
* 多次联想;
* 联想;
* 后台检索
注:
1. 思维结果不是由意识决定的,也不是cpu决定的;也不是代码算法决定的;而是由数据决定的;
2. 一切都要保证数据的灵活性, `数据产生逻辑` 的原则;
3. 数据有效性没有100%;所以有多次联想,想像力,等来帮助多事务找到问题出口;
4. 思维的元操作,(类比是针对神经网络的读取等操作的);除类比外,神经网络的一些经验记录才是真正的逻辑源;(常识等)
| title | desc |
1 |
思维规则问题: |
内心活动,思维的变化,demandTask与决策的变化;是否需要怎样的针对规则设计 |
n8p18 DOP(DataOrientedProgramming)面向数据编程
CreateTime 17.11.11
| time | desc |
1 |
2017.02 |
DataLanguage |
2 |
2017.05 |
AIFoundation |
3 |
2017.08 |
LOP |
4 |
2017.11 |
DOP |
| title | desc | 参考 |
1 |
OOP |
|
n4p13 |
2 |
LOP |
|
n4p13 |
3 |
DOP |
LOP的分层其实是不明确的,并且定义不太准确,(其实就是起的名字不太对,所以换了DOP) |
n4p13 |
| 论点 | desc |
1 |
概念 |
逻辑产生于数据,并非一切逻辑源于数据,是与控制理论相结合;所以才有DOP和本系统架构 |
2 |
简介 |
是控制与灵活之间的设计;就像协议;很轻;从而使数据不会因熵增而爆! |
3 |
数据 |
将OOP的继承,属性,多态,抽象,接口等全在Net中表示;Net就是数据中枢;此时,所有逻辑,规律,经验,常识等都在数据中; |
4 |
代码编程 |
以往编程逻辑都是用代码写的;只偶尔也会对数据作一些小范围判断; |
5 |
代码进化 |
但如果数据范围占据大多;此时,逻辑将几乎被数据引导;就像人类依赖记忆和经历来作决策思考一样; |
6 |
DOP的控制器 |
以往控制器;用来写model,view等其它层逻辑;而smg中,控制器不仅是控制自身的代码顺利运行,也要作为一个监督者的身份;来作数据的元操作与控制数据的安全范围; |
7 |
定义 |
在smg中把这种安全范围的控制称作:"规则"; |
8 |
描述DOP控制器 |
即控制器并非完全的控制整个逻辑;而是跑规则;让这些数据安全不失控的规则; |
9 |
举栗 |
"有个大人在看小孩";:原先的控制器逻辑就像命令小孩的每一个动作和行为;而现在的只是规定小孩子只能在某个范围内玩耍;其它的全部交由小孩子自己决定; |
10 |
栗子回归 |
编程诞生之初;有人用代码指令的方式实现了计算机按着他的意愿输出了HelloWorld;而这一步;即是生;也是死; 1. 生在于计算机可以听从指令运行各种复杂逻辑运算了; 2. 死在于;计算机从此就成了那个听话的孩子;多少程序员从此与bug打交道;而后的面向对象;只是让代码结构更灵活易维护了;但终还是在代码上;未脱离开代码; |
11 |
结 |
这就是让逻辑产生于数据;其最大特点是:灵活性,弱依赖运算,不确切,智能,个体多样性等; |
n8p19 思维控制器-预测
CreateTime 17.11.17
脑: 前额叶
| desc |
|
预测是 未来想像力 ,是想像力的一种,预测描述的是其结果 |
| desc |
1 |
基于大量常识的是分析+预测 |
2 |
基于经验的才是预测 |
TaskList