bzoj 1467: Pku3243 clever Y 扩展BSGS
1467: Pku3243 clever Y
Time Limit: 4 Sec Memory Limit: 64 MB[Submit][Status][Discuss]
Description
小Y发现,数学中有一个很有趣的式子: X^Y mod Z = K 给出X、Y、Z,我们都知道如何很快的计算K。但是如果给出X、Z、K,你是否知道如何快速的计算Y呢?
Input
本题由多组数据(不超过20组),每组测试数据包含一行三个整数X、Z、K(0 <= X, Z, K <= 109)。 输入文件一行由三个空格隔开的0结尾。
Output
对于每组数据:如果无解则输出一行No Solution,否则输出一行一个整数Y(0 <= Y < Z),使得其满足XY mod Z = K,如果有多个解输出最小的一个Y。
Sample Input
5 58 33
2 4 3
0 0 0
2 4 3
0 0 0
Sample Output
9
No Solution
No Solution
#include<bits/stdc++.h> using namespace std; #define ll long long #define pi (4*atan(1.0)) #define eps 1e-14 const int N=2e5+10,M=4e6+10,inf=1e9+10,mod=1e9+7; const int MAXN= 99991 ; struct LINK{ ll data; ll j; ll next; }HASH_LINK[1000000]; ll ad, head[MAXN]; ll Gcd(ll a, ll b){ return b ? Gcd(b, a % b) : a; } ll Ext_Gcd(ll a, ll b, ll &x, ll &y){ if(!b){ x = 1; y = 0; return a; } ll r = Ext_Gcd(b, a % b, x, y); ll t = x; x = y; y = t - a / b * y; return r; } ll POWER(ll a, ll b, ll c){ ll ans = 1; while(b){ if(b & 1) ans = ans * a % c; a = a * a % c; b >>= 1; } return ans; } void init(){ memset(head, -1, sizeof(head)); ad = 0; } ll Hash(ll a){ return a % MAXN; } void INSERT_HASH(ll i, ll buf){ ll hs = Hash(buf), tail; for(tail = head[hs]; ~tail; tail = HASH_LINK[tail]. next) if(buf == HASH_LINK[tail]. data) return; HASH_LINK[ad]. data = buf; HASH_LINK[ad]. j = i; HASH_LINK[ad]. next = head[hs]; head[hs] = ad ++; } ll BSGS(ll a, ll b, ll c){ ll i, buf, m, temp, g, D, x, y, n = 0; for(i = 0, buf = 1; i < 100; i ++, buf = buf * a % c) if(buf == b) return i; D = 1; while((g = Gcd(a, c)) != 1){ if(b % g) return -1; // g | b 不满足,则说明无解 b /= g; c /= g; D = D * a / g % c; ++ n; } init(); m = ceil(sqrt((long double) c)); for(i = 0, buf = 1; i <= m; buf = buf * a % c, i ++) INSERT_HASH(i, buf); for(i = 0, temp = POWER(a, m, c), buf = D; i <= m; i ++, buf = temp * buf % c){ Ext_Gcd(buf, c, x, y); x = ((x * b) % c + c) % c; for(ll tail = head[Hash(x)]; ~tail; tail = HASH_LINK[tail].next) if(HASH_LINK[tail]. data == x) return HASH_LINK[tail].j + n + i * m; } return -1; } int main() { ll a,b,n; while(~scanf("%lld%lld%lld",&a,&n,&b)) { if(a==0&&b==0&&n==0)break; if(n<b) { printf("No Solution\n"); continue; } ll ans=BSGS(a,b,n); if(ans==-1) printf("No Solution\n"); else printf("%lld\n",ans%mod); } return 0; }