转载出处:http://www.cnblogs.com/adong7639/p/4267326.html
立体匹配算法最新动态:
http://vision.middlebury.edu/stereo/eval/
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
相关文献:http://blog.csdn.net/xuyuhua1985/article/details/26283389
介绍立体匹配的基本原理: http://vision.deis.unibo.it/~smatt/Seminars/StereoVision.pdf(比较清晰)
立体匹配综述性文章 : http://wenku.baidu.com/view/5b359d7d5acfa1c7aa00cc7b.html
立体匹配算法的基本目标:找出图像的每个像素点在另一个视角的图像上对应的像素点,算出视差图像,估算出景深图像。
最简单的SAD块匹配算法
//Stereo Match By SAD #include <opencv2/opencv.hpp> #include <vector> #include <algorithm> #include <iostream> #include <windows.h> #include <string> using namespace std; using namespace cv; DWORD t1; DWORD t2; void timebegin() { t1 = GetTickCount(); } void timeend(string str) { t2 = GetTickCount(); cout << str << " is "<< (t2 - t1)/1000 << "s" << endl; } float sadvalue(const Mat &src1, const Mat &src2) { Mat matdiff = cv::abs(src1 -src2); int saddiff = cv::sum(matdiff)[0]; return saddiff; } float GetMinSadIndex(std::vector<float> &sad) { float minsad = sad[0]; int index = 0; int len = sad.size(); for (int i = 1; i < len; ++i) { if (sad[i] < minsad) { minsad = sad[i]; index = i; } } return index; } void MatDataNormal(const Mat &src, Mat &dst) { normalize(src, dst, 255, 0, NORM_MINMAX ); dst.convertTo(dst, CV_8UC1); } void GetPointDepthRight(Mat &disparity, const Mat &leftimg, const Mat &rightimg, const int MaxDisparity, const int winsize) { int row = leftimg.rows; int col = leftimg.cols; if (leftimg.channels() == 3 && rightimg.channels() == 3) { cvtColor(leftimg, leftimg, CV_BGR2GRAY); cvtColor(rightimg, rightimg, CV_BGR2GRAY); } //Mat disparity = Mat ::zeros(row,col, CV_32S); int w = winsize; int rowrange = row - w; int colrange = col - w - MaxDisparity; for (int i = w; i < rowrange; ++i) { int *ptr = disparity.ptr<int>(i); for (int j = w; j < colrange; ++j) { //Rect rightrect; Mat rightwin = rightimg(Range(i - w,i + w + 1),Range(j - w,j + w + 1)); std::vector<float> sad(MaxDisparity); for (int d = j; d < j + MaxDisparity; ++d) { //Rect leftrect; Mat leftwin = leftimg(Range(i - w,i + w + 1),Range(d - w,d + w + 1)); sad[d - j] = sadvalue(leftwin, rightwin); } *(ptr + j) = GetMinSadIndex(sad); } } } void GetPointDepthLeft(Mat &disparity, const Mat &leftimg, const Mat &rightimg, const int MaxDisparity, const int winsize) { int row = leftimg.rows; int col = leftimg.cols; if (leftimg.channels() == 3 && rightimg.channels() == 3) { cvtColor(leftimg, leftimg, CV_BGR2GRAY); cvtColor(rightimg, rightimg, CV_BGR2GRAY); } //Mat disparity = Mat ::zeros(row,col, CV_32S); int w = winsize; int rowrange = row - w; int colrange = col - w; for (int i = w; i < rowrange; ++i) { int *ptr = disparity.ptr<int>(i); for (int j = MaxDisparity + w; j < colrange; ++j) { //Rect leftrect; Mat leftwin = leftimg(Range(i - w,i + w + 1),Range(j - w,j + w + 1)); std::vector<float> sad(MaxDisparity); for (int d = j; d > j - MaxDisparity; --d) { //Rect rightrect; Mat rightwin = rightimg(Range(i - w,i + w + 1),Range(d - w,d + w + 1)); sad[j - d] = sadvalue(leftwin, rightwin); } *(ptr + j) = GetMinSadIndex(sad); } } } //(Left-Right Consistency (LRC) void CrossCheckDiaparity(const Mat &leftdisp, const Mat &rightdisp, Mat &lastdisp, const int MaxDisparity, const int winsize) { int row = leftdisp.rows; int col = rightdisp.cols; int w = winsize; int rowrange = row - w; int colrange = col - MaxDisparity - w; int diffthreshold = 2; for (int i = w; i < row -w; ++i) { const int *ptrleft = leftdisp.ptr<int>(i); const int *ptrright = rightdisp.ptr<int>(i); int *ptrdisp = lastdisp.ptr<int>(i); for (int j = MaxDisparity + w; j < col - MaxDisparity - w; ++j) { int leftvalue = *(ptrleft + j); int rightvalue = *(ptrright + j - leftvalue ); int diff = abs(leftvalue - rightvalue); if (diff > diffthreshold) { *(ptrdisp + j) = 0; }else { *(ptrdisp + j) = leftvalue; } } } } int main() { Mat leftimg = imread("left1.png",0); Mat rightimg = imread("right1.png",0); if (leftimg.channels() == 3 && rightimg.channels() == 3) { cvtColor(leftimg, leftimg, CV_BGR2GRAY); cvtColor(rightimg, rightimg, CV_BGR2GRAY); } float scale = 1; int row = leftimg.rows * scale; int col = leftimg.cols * scale; resize(leftimg, leftimg, Size( col, row)); resize(rightimg,rightimg, Size(col, row)); Mat depthleft = Mat ::zeros(row,col, CV_32S); Mat depthright = Mat ::zeros(row,col, CV_32S); Mat lastdisp = Mat ::zeros(row,col, CV_32S); int MaxDisparity = 60 * scale; int winsize = 31*scale; timebegin(); GetPointDepthLeft(depthleft, leftimg, rightimg, MaxDisparity, winsize); GetPointDepthRight(depthright, leftimg, rightimg, MaxDisparity, winsize); CrossCheckDiaparity(depthleft,depthright, lastdisp, MaxDisparity, winsize); timeend("time "); MatDataNormal(depthleft,depthleft); MatDataNormal(depthright, depthright); MatDataNormal(lastdisp, lastdisp); namedWindow("left", 0); namedWindow("right", 0); namedWindow("depthleft", 0); namedWindow("depthright", 0); namedWindow("lastdisp",0); imshow("left", leftimg); imshow("right", rightimg); imshow("depthleft", depthleft); imshow("depthright", depthright); imshow("lastdisp",lastdisp); string strsave = "result_"; imwrite(strsave +"depthleft.jpg", depthleft); imwrite(strsave +"depthright.jpg", depthright); imwrite(strsave +"lastdisp.jpg",lastdisp); waitKey(0); return 0; }
left.png right.png
left1_depthleft.jpg right1_depthleft.jpg lastdisp
OpenCv中实现了三种立体匹配算法:
BM算法
SGBM算法 Stereo Processing by Semiglobal Matching and Mutual Information
GC算法 算法文献:Realistic CG Stereo Image Dataset with Ground Truth Disparity Maps
参考:http://blog.csdn.net/wqvbjhc/article/details/6260844
BM算法:速度很快,效果一般
void BM() {
IplImage * img1 = cvLoadImage("left.png",0); IplImage * img2 = cvLoadImage("right.png",0); CvStereoBMState* BMState=cvCreateStereoBMState(); assert(BMState); BMState->preFilterSize=9; BMState->preFilterCap=31; BMState->SADWindowSize=15; BMState->minDisparity=0; BMState->numberOfDisparities=64; BMState->textureThreshold=10; BMState->uniquenessRatio=15; BMState->speckleWindowSize=100; BMState->speckleRange=32; BMState->disp12MaxDiff=1; CvMat* disp=cvCreateMat(img1->height,img1->width,CV_16S); CvMat* vdisp=cvCreateMat(img1->height,img1->width,CV_8U); int64 t=getTickCount(); cvFindStereoCorrespondenceBM(img1,img2,disp,BMState); t=getTickCount()-t; cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl; cvSave("disp.xml",disp); cvNormalize(disp,vdisp,0,255,CV_MINMAX); cvNamedWindow("BM_disparity",0); cvShowImage("BM_disparity",vdisp); cvWaitKey(0); //cvSaveImage("cones\\BM_disparity.png",vdisp); cvReleaseMat(&disp); cvReleaseMat(&vdisp); cvDestroyWindow("BM_disparity"); }
left.png right.png disparity.jpg
SGBM算法,作为一种全局匹配算法,立体匹配的效果明显好于局部匹配算法,但是同时复杂度上也要远远大于局部匹配算法。算法主要是参考Stereo Processing by Semiglobal Matching and Mutual Information。
opencv中实现的SGBM算法计算匹配代价没有按照原始论文的互信息作为代价,而是按照块匹配的代价。
参考:http://www.opencv.org.cn/forum.php?mod=viewthread&tid=23854
#include <highgui.h> #include <cv.h> #include <cxcore.h> #include <iostream> using namespace std; using namespace cv; int main() { IplImage * img1 = cvLoadImage("left.png",0); IplImage * img2 = cvLoadImage("right.png",0); cv::StereoSGBM sgbm; int SADWindowSize = 9; sgbm.preFilterCap = 63; sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3; int cn = img1->nChannels; int numberOfDisparities=64; sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; sgbm.minDisparity = 0; sgbm.numberOfDisparities = numberOfDisparities; sgbm.uniquenessRatio = 10; sgbm.speckleWindowSize = 100; sgbm.speckleRange = 32; sgbm.disp12MaxDiff = 1; Mat disp, disp8; int64 t = getTickCount(); sgbm((Mat)img1, (Mat)img2, disp); t = getTickCount() - t; cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl; disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.)); namedWindow("left", 1); cvShowImage("left", img1); namedWindow("right", 1); cvShowImage("right", img2); namedWindow("disparity", 1); imshow("disparity", disp8); waitKey(); imwrite("sgbm_disparity.png", disp8); cvDestroyAllWindows(); return 0; }
left.png right.png disparity.jpg
GC算法 效果最好,速度最慢
void GC() {
IplImage * img1 = cvLoadImage("left.png",0); IplImage * img2 = cvLoadImage("right.png",0); CvStereoGCState* GCState=cvCreateStereoGCState(64,3); assert(GCState); cout<<"start matching using GC"<<endl; CvMat* gcdispleft=cvCreateMat(img1->height,img1->width,CV_16S); CvMat* gcdispright=cvCreateMat(img2->height,img2->width,CV_16S); CvMat* gcvdisp=cvCreateMat(img1->height,img1->width,CV_8U); int64 t=getTickCount(); cvFindStereoCorrespondenceGC(img1,img2,gcdispleft,gcdispright,GCState); t=getTickCount()-t; cout<<"Time elapsed:"<<t*1000/getTickFrequency()<<endl; //cvNormalize(gcdispleft,gcvdisp,0,255,CV_MINMAX); //cvSaveImage("GC_left_disparity.png",gcvdisp); cvNormalize(gcdispright,gcvdisp,0,255,CV_MINMAX); cvSaveImage("GC_right_disparity.png",gcvdisp); cvNamedWindow("GC_disparity",0); cvShowImage("GC_disparity",gcvdisp); cvWaitKey(0); cvReleaseMat(&gcdispleft); cvReleaseMat(&gcdispright); cvReleaseMat(&gcvdisp); }
left.png right.png disparity.jpg
如何设置BM、SGBM和GC算法的状态参数?
参看:http://blog.csdn.net/chenyusiyuan/article/details/5967291