Python 开发者不得不知的魔术方法(Magic Method)

分享一篇发表于开源中国的文章:Python魔术方法-Magic Method,原作者是:_hao104

介绍

在Python中,所有以“__”双下划线包起来的方法,都统称为“Magic Method”,例如类的初始化方法 __init__,Python中所有的魔术方法均在官方文档中有相应描述,但是对于官方的描述比较混乱而且组织比较松散。很难找到有一个例子。

构造和初始化

每个Pythoner都知道一个最基本的魔术方法, __init__ 。通过此方法我们可以定义一个对象的初始操作。然而,当调用 x = SomeClass() 的时候, __init__ 并不是第一个被调用的方法。实际上,还有一个叫做__new__ 的方法,两个共同构成了“构造函数”。

__new__是用来创建类并返回这个类的实例, 而__init__只是将传入的参数来初始化该实例。

在对象生命周期调用结束时,__del__ 方法会被调用,可以将__del__理解为“构析函数”。下面通过代码的看一看这三个方法:

from os.path import join

class FileObject:
   '''给文件对象进行包装从而确认在删除时文件流关闭'''

   def __init__(self, filepath='~', filename='sample.txt'):
       #读写模式打开一个文件
       self.file = open(join(filepath, filename), 'r+')

   def __del__(self):
       self.file.close()
       del self.file

控制属性访问

许多从其他语言转到Python的人会抱怨它缺乏类的真正封装。(没有办法定义私有变量,然后定义公共的getter和setter)。Python其实可以通过魔术方法来完成封装。我们来看一下:

__getattr__(self, name)

定义当用户试图获取一个不存在的属性时的行为。这适用于对普通拼写错误的获取和重定向,对获取一些不建议的属性时候给出警告(如果你愿意你也可以计算并且给出一个值)或者处理一个 AttributeError 。只有当调用不存在的属性的时候会被返回。

__setattr__(self, name, value)

与__getattr__(self, name)不同,__setattr__ 是一个封装的解决方案。无论属性是否存在,它都允许你定义对对属性的赋值行为,以为这你可以对属性的值进行个性定制。实现__setattr__时要避免”无限递归”的错误。

__delattr__

与 __setattr__ 相同,但是功能是删除一个属性而不是设置他们。实现时也要防止无限递归现象发生。

__getattribute__(self, name)

__getattribute__定义了你的属性被访问时的行为,相比较,__getattr__只有该属性不存在时才会起作用。因此,在支持__getattribute__的Python版本,调用__getattr__前必定会调用 __getattribute__。__getattribute__同样要避免”无限递归”的错误。需要提醒的是,最好不要尝试去实现__getattribute__,因为很少见到这种做法,而且很容易出bug。

在进行属性访问控制定义的时候很可能会很容易引起“无限递归”。如下面代码:

#  错误用法
def __setattr__(self, name, value):
   self.name = value
   # 每当属性被赋值的时候(如self.name = value), ``__setattr__()`` 会被调用,这样就造成了递归调用。
   # 这意味这会调用 ``self.__setattr__('name', value)`` ,每次方法会调用自己。这样会造成程序崩溃。

#  正确用法
def __setattr__(self, name, value):
   self.__dict__[name] = value  # 给类中的属性名分配值
   # 定制特有属性
# 更多Python视频、源码、资料加群683380553免费获取

Python的魔术方法很强大,但是用时却需要慎之又慎,了解正确的使用方法非常重要。

创建自定义容器

有很多方法可以让你的Python类行为向内置容器类型一样,比如我们常用的list、dict、tuple、string等等。Python的容器类型分为可变类型(如list、dict)和不可变类型(如string、tuple),可变容器和不可变容器的区别在于,不可变容器一旦赋值后,不可对其中的某个元素进行修改。   在讲创建自定义容器之前,应该先了解下协议。这里的协议跟其他语言中所谓的”接口”概念很像,它给你很多你必须定义的方法。然而在Python中的协议是很不正式的,不需要明确声明实现。事实上,他们更像一种指南。

自定义容器的magic method

下面细致了解下定义容器可能用到的魔术方法。首先,实现不可变容器的话,你只能定义 __len__ 和 __getitem__ (下面会讲更多)。可变容器协议则需要所有不可变容器的所有,另外还需要 __setitem__ 和 __delitem__。如果你希望你的对象是可迭代的话,你需要定义 __iter__ 会返回一个迭代器。迭代器必须遵循迭代器协议,需要有 __iter__(返回它本身) 和 next。

__len__(self)

返回容器的长度。对于可变和不可变容器的协议,这都是其中的一部分。

__getitem__(self, key)

定义当某一项被访问时,使用self[key]所产生的行为。这也是不可变容器和可变容器协议的一部分。如果键的类型错误将产生TypeError;如果key没有合适的值则产生KeyError。

__setitem__(self, key, value)

当你执行self[key] = value时,调用的是该方法。

__delitem__(self, key)

定义当一个项目被删除时的行为(比如 del self[key])。这只是可变容器协议中的一部分。当使用一个无效的键时应该抛出适当的异常。

__iter__(self)

返回一个容器迭代器,很多情况下会返回迭代器,尤其是当内置的iter()方法被调用的时候,以及当使用for x in container:方式循环的时候。迭代器是它们本身的对象,它们必须定义返回self的__iter__方法。

__reversed__(self)

实现当reversed()被调用时的行为。应该返回序列反转后的版本。仅当序列可以是有序的时候实现它,例如对于列表或者元组。

__contains__(self, item)

定义了调用in和not in来测试成员是否存在的时候所产生的行为。你可能会问为什么这个不是序列协议的一部分?因为当__contains__没有被定义的时候,如果没有定义,那么Python会迭代容器中的元素来一个一个比较,从而决定返回True或者False。

__missing__(self, key)

dict字典类型会有该方法,它定义了key如果在容器中找不到时触发的行为。比如d = {‘a’: 1}, 当你执行d[notexist]时,d.__missing__[‘notexist’]就会被调用。

一个例子

下面是书中的例子,用魔术方法来实现Haskell语言中的一个数据结构。

# -*- coding: utf-8 -*-
# 更多Python视频、源码、资料加群683380553免费获取
class FunctionalList:
   ''' 实现了内置类型list的功能,并丰富了一些其他方法: head, tail, init, last, drop, take'''

   def __init__(self, values=None):
       if values is None:
           self.values = []
       else:
           self.values = values

   def __len__(self):
       return len(self.values)

   def __getitem__(self, key):
       return self.values[key]

   def __setitem__(self, key, value):
       self.values[key] = value

   def __delitem__(self, key):
       del self.values[key]

   def __iter__(self):
       return iter(self.values)

   def __reversed__(self):
       return FunctionalList(reversed(self.values))

   def append(self, value):
       self.values.append(value)

   def head(self):
       # 获取第一个元素
       return self.values[0]

   def tail(self):
       # 获取第一个元素之后的所有元素
       return self.values[1:]

   def init(self):
       # 获取最后一个元素之前的所有元素
       return self.values[:-1]

   def last(self):
       # 获取最后一个元素
       return self.values[-1]

   def drop(self, n):
       # 获取所有元素,除了前N个
       return self.values[n:]

   def take(self, n):
       # 获取前N个元素
       return self.values[:n]

其实在collections模块中已经有了很多类似的实现,比如Counter、OrderedDict等等。

反射

你也可以控制怎么使用内置在函数sisinstance()和issubclass()方法 反射定义魔术方法. 这个魔术方法是:

__instancecheck__(self, instance)

检查一个实例是不是你定义的类的实例

__subclasscheck__(self, subclass)

检查一个类是不是你定义的类的子类

这些魔术方法的用例看起来很小, 并且确实非常实用. 它们反应了关于面向对象程序上一些重要的东西在Python上,并且总的来说Python: 总是一个简单的方法去找某些事情, 即使是没有必要的. 这些魔法方法可能看起来不是很有用, 但是一旦你需要它们,你会感到庆幸它们的存在。

可调用的对象

你也许已经知道,在Python中,方法是最高级的对象。这意味着他们也可以被传递到方法中,就像其他对象一样。这是一个非常惊人的特性。

在Python中,一个特殊的魔术方法可以让类的实例的行为表现的像函数一样,你可以调用它们,将一个函数当做一个参数传到另外一个函数中等等。这是一个非常强大的特性,其让Python编程更加舒适甜美。

__call__(self, [args...])

允许一个类的实例像函数一样被调用。实质上说,这意味着 x() 与 x.__call__() 是相同的。注意 __call__ 的参数可变。这意味着你可以定义 __call__ 为其他你想要的函数,无论有多少个参数。

__call__ 在那些类的实例经常改变状态的时候会非常有效。调用这个实例是一种改变这个对象状态的直接和优雅的做法。用一个实例来表达最好不过了:

# -*- coding: UTF-8 -*-
# python学习交流群:103456743
class Entity:
   """
   调用实体来改变实体的位置
   """

def __init__(self, size, x, y):
   self.x, self.y = x, y
   self.size = size

def __call__(self, x, y):
   """
   改变实体的位置
   """
   self.x, self.y = x, y

上下文管理

with声明是从Python2.5开始引进的关键词。你应该遇过这样子的代码:

with open('foo.txt') as bar:
   # do something with bar

在with声明的代码段中,我们可以做一些对象的开始操作和退出操作,还能对异常进行处理。这需要实现两个魔术方法: __enter__ 和 __exit__。

__enter__(self)

定义了当使用with语句的时候,会话管理器在块被初始创建时要产生的行为。请注意,__enter__的返回值与with语句的目标或者as后的名字绑定。

__exit__(self, exception_type, exception_value, traceback)

定义了当一个代码块被执行或者终止后,会话管理器应该做什么。它可以被用来处理异常、执行清理工作或做一些代码块执行完毕之后的日常工作。如果代码块执行成功,exceptiontype,exceptionvalue,和traceback将会为None。否则,你可以选择处理这个异常或者是直接交给用户处理。如果你想处理这个异常的话,请确保__exit在所有语句结束之后返回True。如果你想让异常被会话管理器处理的话,那么就让其产生该异常。

创建对象描述器

描述器是通过获取、设置以及删除的时候被访问的类。当然也可以改变其它的对象。描述器并不是独立的。相反,它意味着被一个所有者类持有。当创建面向对象的数据库或者类,里面含有相互依赖的属相时,描述器将会非常有用。一种典型的使用方法是用不同的单位表示同一个数值,或者表示某个数据的附加属性。

为了成为一个描述器,一个类必须至少有__get__,__set__,__delete__方法被实现:

__get__(self, instance, owner)

定义了当描述器的值被取得的时候的行为。instance是拥有该描述器对象的一个实例。owner是拥有者本身

__set__(self, instance, value)

定义了当描述器的值被改变的时候的行为。instance是拥有该描述器类的一个实例。value是要设置的值。

__delete__(self, instance)

定义了当描述器的值被删除的时候的行为。instance是拥有该描述器对象的一个实例。

下面是一个描述器的实例:单位转换。

# -*- coding: UTF-8 -*-
# python学习交流群:103456743

class Meter(object):
   """
   对于单位"米"的描述器
   """
   def __init__(self, value=0.0):
       self.value = float(value)

   def __get__(self, instance, owner):
       return self.value

   def __set__(self, instance, value):
       self.value = float(value)

class Foot(object):
   """
   对于单位"英尺"的描述器
   """
   def __get__(self, instance, owner):
       return instance.meter * 3.2808
   def __set__(self, instance, value):
       instance.meter = float(value) / 3.2808

class Distance(object):
   """
   用米和英寸来表示两个描述器之间的距离
   """
   meter = Meter(10)
   foot = Foot()

使用时:

>>>d = Distance()
>>>print d.foot
>>>print d.meter
32.808
10.0

复制

有时候,尤其是当你在处理可变对象时,你可能想要复制一个对象,然后对其做出一些改变而不希望影响原来的对象。这就是Python的copy所发挥作用的地方。

__copy__(self)

定义了当对你的类的实例调用copy.copy()时所产生的行为。copy.copy()返回了你的对象的一个浅拷贝——这意味着,当实例本身是一个新实例时,它的所有数据都被引用了——例如,当一个对象本身被复制了,它的数据仍然是被引用的(因此,对于浅拷贝中数据的更改仍然可能导致数据在原始对象的中的改变)。

__deepcopy__(self, memodict={})

定义了当对你的类的实例调用copy.deepcopy()时所产生的行为。copy.deepcopy()返回了你的对象的一个深拷贝——对象和其数据都被拷贝了。memodict是对之前被拷贝的对象的一个缓存——这优化了拷贝过程并且阻止了对递归数据结构拷贝时的无限递归。当你想要进行对一个单独的属性进行深拷贝时,调用copy.deepcopy(),并以memodict为第一个参数。

附录

用于比较的魔术方法

数值计算的魔术方法

单目运算符和函数

双目运算符或函数

增量运算

类型转换

posted @ 2022-10-07 20:55  I'm_江河湖海  阅读(3)  评论(0编辑  收藏  举报