摘要: Adaboost的基本思路如下: 给每个样本一个权重,初始化所有样本权重相同 使用当前样本权重,训练一个(简单)模型 根据模型结果,给判断正确的样本降权,给判断错误的样本加权 使用新的样本权重,重新训练(简单)模型,重复若干轮 将若干轮的(简单)模型线性合并为复合模型,作为最终模型 现有包含N个样本 阅读全文
posted @ 2019-12-17 19:15 jhc888007 阅读(226) 评论(0) 推荐(0) 编辑