Adaboost 原理推导 学习笔记

Adaboost的基本思路如下:

  • 给每个样本一个权重,初始化所有样本权重相同
  • 使用当前样本权重,训练一个(简单)模型
  • 根据模型结果,给判断正确的样本降权,给判断错误的样本加权
  • 使用新的样本权重,重新训练(简单)模型,重复若干轮
  • 将若干轮的(简单)模型线性合并为复合模型,作为最终模型

现有包含N个样本的数据集T

\[T = \{ ({x_1},{y_1}),({x_2},{y_2}),...,({x_N},{y_N})\} ,y \in \{  - 1,1\} \]

假设第m轮训练的简单模型为Gm(x),经过第m轮训练后,复合模型为Fm(x),令第m轮简单模型在复合模型中的权重为am,则可得

\[{F_m}(x) = {F_{m - 1}}(x) + {a_m}{G_m}(x),{G_m}(x) \in \{  - 1,1\} \]

使用指数损失函数

\[\begin{array}{l}
{L_m} = \sum\limits_i {\exp ( - {y_i}{F_m}({x_i}))} \\
= \sum\limits_i {\exp ( - {y_i}{F_{m - 1}}({x_i}) - {a_m}{y_i}{G_m}({x_i}))} \\
= \sum\limits_i {\exp ( - {y_i}{F_{m - 1}}({x_i}))\exp ( - {a_m}{y_i}{G_m}({x_i}))}
\end{array}\]

可见求和项中第一个指数项跟第m轮训练无关,只跟第m轮训练以前有关。令

\[{\omega _{mi}} = \exp ( - {y_i}{F_{m - 1}}({x_i}))\]

将Gm(x)想办法消掉,可得

\[\begin{array}{l}
{L_m} = \sum\limits_i {{\omega _{mi}}\exp ( - {a_m}{y_i}{G_m}({x_i}))} \\
= \sum\limits_{{y_i} = {G_m}({x_i})} {{\omega _{mi}}\exp ( - {a_m})} + \sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}\exp ({a_m})} \\
= {e^{ - {a_m}}}\sum\limits_{{y_i} = {G_m}({x_i})} {{\omega _{mi}}} + {e^{{a_m}}}\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} \\
= {e^{ - {a_m}}}(\sum\limits_i {{\omega _{mi}}} - \sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} ) + {e^{{a_m}}}\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} \\
= {e^{ - {a_m}}}\sum\limits_i {{\omega _{mi}}} + ({e^{{a_m}}} - {e^{ - {a_m}}})\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}}
\end{array}\]

要求损失函数的最小值,可以通过求导,令Lm对am求导并令其等于0,可得

\[\frac{{\partial {L_m}}}{{\partial {a_m}}} =  - {e^{ - {a_m}}}\sum\limits_i {{\omega _{mi}}}  + ({e^{{a_m}}} + {e^{ - {a_m}}})\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}}  = 0\]

\[\begin{array}{l}
({e^{{a_m}}} + {e^{ - {a_m}}})\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} = {e^{ - {a_m}}}\sum\limits_i {{\omega _{mi}}} \\
(1 + {e^{ - 2{a_m}}}) = \frac{{\sum\limits_i {{\omega _{mi}}} }}{{\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} }}\\
{e^{ - 2{a_m}}} = \frac{{\sum\limits_i {{\omega _{mi}}} }}{{\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} }} - 1\\
{a_m} = - \frac{1}{2}\ln (\frac{{\sum\limits_i {{\omega _{mi}}} }}{{\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} }} - 1)
\end{array}\]

至此Adaboost的最基本的公式已经推导完成了

但可以注意到ωmi可以递推

\[\begin{array}{l}
{\omega _{mi}} = \exp ( - {y_i}{F_{m - 1}}({x_i}))\\
= \exp ( - {y_i}{F_{m - 2}}({x_i}) - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i}))\\
= \exp ( - {y_i}{F_{m - 2}}({x_i}))\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i}))\\
= \exp ( - {y_i}{F_{m - 3}}({x_i}))\exp ( - {a_{m - 2}}{y_i}{G_{m - 2}}({x_i}))\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i}))\\
= \prod\limits_{j = 1}^{m - 1} {\exp ( - {a_j}{y_i}{G_j}({x_i}))}
\end{array}\]

可见ωmi不仅只与第m轮训练以前训练的若干个模型相关,并且只与这些模型对样本i的预测值相关,并且为连乘形式。又由于每个样本的权重也可以是连乘形式,所以可以很自然地将ωmi与每轮训练每个样本的权重联系起来

如果将ωmi作为每轮训练每个样本的权重,则am的计算方程中

\[{\sum\limits_i {{\omega _{mi}}} }\]

为该轮训练所有样本的权重之和

\[{\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} }\]

为该轮训练所有区分错误样本的权重之和

如果令每轮训练所有样本的权重之和等于1,根据的am计算方程不会影响am的取值,等比例缩放也不会影响样本间的权重关系,因此可令第m轮训练样本的样本权重为

\[{w_{mi}} = \frac{{{\omega _{mi}}}}{{\sum\limits_i {{\omega _{mi}}} }}\]

可知

\[\sum\limits_i {{w_{mi}}}  = 1\]

\[{w_{mi}} = \frac{{{\omega _{mi}}}}{{\sum\limits_i {{\omega _{mi}}} }} = \frac{{\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i})){\omega _{(m - 1)i}}}}{{\sum\limits_i {\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i})){\omega _{(m - 1)i}}} }} = \frac{{\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i}))\frac{{{\omega _{(m - 1)i}}}}{{\sum\limits_i {{\omega _{(m - 1)i}}} }}}}{{\sum\limits_i {\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i}))\frac{{{\omega _{(m - 1)i}}}}{{\sum\limits_i {{\omega _{(m - 1)i}}} }}} }} = \frac{{\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i})){w_{(m - 1)i}}}}{{\sum\limits_i {\exp ( - {a_{m - 1}}{y_i}{G_{m - 1}}({x_i})){w_{(m - 1)i}}} }}\]

再令em为第m轮训练的误差

\[{e_m} = \sum\limits_{{y_i} \ne {G_m}({x_i})} {{w_{mi}}}  = \frac{{\sum\limits_{{y_i} \ne {G_m}({x_i})} {{\omega _{mi}}} }}{{\sum\limits_i {{\omega _{mi}}} }}\]

可得

\[{a_m} = \frac{1}{2}\ln (\frac{{{e_m}}}{{1 - {e_m}}})\]

至此,Adaboost所有公式证毕

 

参考文献:

https://www.cnblogs.com/ScorpioLu/p/8295990.html

http://www.uml.org.cn/sjjmwj/2019030721.asp

 

posted @ 2019-12-17 19:15  jhc888007  阅读(226)  评论(0编辑  收藏  举报