[代码]ural 1913 Titan Ruins: Old Generators Are Fine Too
Abstract
ural 1913 Titan Ruins: Old Generators Are Fine Too
implementation 几何 圆交
Source
http://acm.timus.ru/problem.aspx?space=1&num=1913
Solution
主要思路就是判断距离到某两个点是r,另一个点是2r的点。
比赛时候用三分乱搞,大概是被卡了精度还是什么的,没有通过。
赛后用圆交重写了一遍,一开始还是没通过。
然后发现自己的圆交模板是针对面积问题的,单点的情况没有考虑清楚,乱改的时候改错了。大致就是处理圆覆盖的情况时,在预处理统计时算被覆盖了一次,在算两圆交点的时候又被统计了一次。还是没弄熟悉圆交的原理所致。
Code
#include <iostream> #include <cassert> #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const double EPS = 1e-8; const double PI = acos(-1.0); inline int sgn(double x) { if (fabs(x)<EPS) return 0; return x>0?1:-1; } struct sp { double x, y; double pa; int cnt; sp() {} sp(double a, double b): x(a), y(b) {} sp(double a, double b, double c, int d): x(a), y(b), pa(c), cnt(d) {} bool operator<(const sp &rhs) const { if (sgn(pa-rhs.pa)==0) return cnt>rhs.cnt; return pa<rhs.pa; } void read() {scanf("%lf%lf", &x, &y);} void write() {printf("%.10f %.10f\n", x, y);} }t, s1, s2, p[5], e[20]; double r, rad[5]; int cover[5]; sp operator*(double d, const sp &v) { return sp(d*v.x, d*v.y); } sp operator-(const sp &u, const sp &v) { return sp(u.x-v.x, u.y-v.y); } sp operator+(const sp &u, const sp &v) { return sp(u.x+v.x, u.y+v.y); } double dot(const sp &u, const sp &v) { return u.x*v.x+u.y*v.y; } double det(const sp &u, const sp &v) { return u.x*v.y-u.y*v.x; } double dis(const sp &u, const sp &v) { double dx = u.x-v.x; double dy = u.y-v.y; return sqrt(dx*dx+dy*dy); } double dissqr(const sp &u, const sp &v) { double dx = u.x-v.x; double dy = u.y-v.y; return dx*dx+dy*dy; } void write(sp u, sp v) { puts("Now we have enough power"); u.write(); v.write(); } bool cirint(const sp &u, double ru, const sp &v, double rv, sp &a, sp &b) { double d = dis(u, v); if (sgn(d-(ru+rv))>0 || sgn(d-fabs(ru-rv))<=0) return 0; sp c = u-v; double ca, sa, cb, sb, csum, ssum; ca = c.x/d, sa = c.y/d; cb = (rv*rv+d*d-ru*ru)/(2*rv*d), sb = sqrt(1-cb*cb); csum = ca*cb-sa*sb; ssum = sa*cb+sb*ca; a = sp(rv*csum, rv*ssum); a = a+v; sb = -sb; csum = ca*cb-sa*sb; ssum = sa*cb+sb*ca; b = sp(rv*csum, rv*ssum); b = b+v; return 1; } bool cu(int N, sp p[], double r[], sp &res) { int i, j, k; memset(cover, 0, sizeof cover); for (i = 0; i < N; ++i) for (j = 0; j < N; ++j) { double rd = r[i]-r[j]; if (i!=j && sgn(rd)>0 && sgn(dis(p[i], p[j])-rd)<=0) cover[j]++; } sp a, b; for (i = 0; i < N; ++i) { int ecnt = 0; e[ecnt++] = sp(p[i].x-r[i], p[i].y, -PI, 1); e[ecnt++] = sp(p[i].x-r[i], p[i].y, PI, -1); for (j = 0; j < N; ++j) { if (j==i) continue; if (cirint(p[i], r[i], p[j], r[j], a, b)) { e[ecnt++] = sp(a.x, a.y, atan2(a.y-p[i].y, a.x-p[i].x), 1); e[ecnt++] = sp(b.x, b.y, atan2(b.y-p[i].y, b.x-p[i].x), -1); if (sgn(e[ecnt-2].pa-e[ecnt-1].pa)>0) { e[0].cnt++; e[1].cnt--; } } } sort(e, e+ecnt); int cnt = e[0].cnt; for (j = 1; j < ecnt; ++j) { if (cover[i]+cnt==N) { double a = (e[j].pa+e[j-1].pa)/2; res = p[i]+sp(r[i]*cos(a), r[i]*sin(a)); return 1; } cnt += e[j].cnt; } } return 0; } bool solve(const sp &o, const sp &u, const sp &v, double r) { p[0] = o, rad[0] = r+r; p[1] = u; p[2] = v; rad[1] = rad[2] = r; sp a, b; if (cu(3, p, rad, a)) { b = 0.5*(a-o); b = o+b; write(a, b); return 1; } else return 0; } int main() { cin>>r; t.read(); s1.read(); s2.read(); sp a, b, c, d; if (cirint(s1, r, s2, r, a, b)) { if (solve(t, s1, s2, r)) return 0; } else { if (cirint(s1, r, t, r, a, b) && cirint(s2, r, t, r, c, d)) { write(a, c); return 0; } else { if (solve(s1, t, s2, r)) return 0; if (solve(s2, t, s1, r)) return 0; } } puts("Death"); return 0; }
顺便贴圆交模板,这回的应该没问题了。
#include <cmath> #include <algorithm> using namespace std; const double PI = acos(-1.0); const double EPS = 1e-8; int sgn(double d) { if (fabs(d)<EPS) return 0; return d>0?1:-1; } struct sp { double x, y; double pa; int cnt; sp() {} sp(double a, double b): x(a), y(b) {} sp(double a, double b, double c, int d): x(a), y(b), pa(c), cnt(d) {} bool operator<(const sp &rhs) const { /* 需要处理单点的情况时 if (sgn(pa-rhs.pa)==0) return cnt>rhs.cnt; */ return pa<rhs.pa; } void read() {scanf("%lf%lf", &x, &y);} void write() {printf("%lf %lf\n", x, y);} }; sp operator+(const sp &u, const sp &v) { return sp(u.x+v.x, u.y+v.y); } sp operator-(const sp &u, const sp &v) { return sp(u.x-v.x, u.y-v.y); } double det(const sp &u, const sp &v) { return u.x*v.y-v.x*u.y; } double dir(const sp &p, const sp &u, const sp &v) { return det(u-p, v-p); } double dis(const sp &u, const sp &v) { double dx = u.x-v.x; double dy = u.y-v.y; return sqrt(dx*dx+dy*dy); } //计算两圆交点 //输入圆心坐标和半径 //返回两圆是否相交(相切不算) //如果相交,交点返回在a和b(从a到b为u的交弧) bool cirint(const sp &u, double ru, const sp &v, double rv, sp &a, sp &b) { double d = dis(u, v); /* 需要处理单点的情况时 覆盖的情况在这里不统计 if (sgn(d-(ru+rv))>0 || sgn(d-fabs(ru-rv))<=0) return 0; */ if (sgn(d-(ru+rv))>=0 || sgn(d-fabs(ru-rv))<=0) return 0; sp c = u-v; double ca, sa, cb, sb, csum, ssum; ca = c.x/d, sa = c.y/d; cb = (rv*rv+d*d-ru*ru)/(2*rv*d), sb = sqrt(1-cb*cb); csum = ca*cb-sa*sb; ssum = sa*cb+sb*ca; a = sp(rv*csum, rv*ssum); a = a+v; sb = -sb; csum = ca*cb-sa*sb; ssum = sa*cb+sb*ca; b = sp(rv*csum, rv*ssum); b = b+v; return 1; } sp e[222]; int cover[111]; //求圆并 //输入点数N,圆心数组p,半径数组r,答案数组s //s[i]表示被至少i个圆覆盖的面积(最普通的圆并就是s[1]) void circle_union(int N, sp p[], double r[], double s[]) { int i, j, k; memset(cover, 0, sizeof cover); for (i = 0; i < N; ++i) for (j = 0; j < N; ++j) { double rd = r[i]-r[j]; //覆盖的情况在这里统计 if (i!=j && sgn(rd)>0 && sgn(dis(p[i], p[j])-rd)<=0) cover[j]++; } for (i = 0; i < N; ++i) { int ecnt = 0; e[ecnt++] = sp(p[i].x-r[i], p[i].y, -PI, 1); e[ecnt++] = sp(p[i].x-r[i], p[i].y, PI, -1); for (j = 0; j < N; ++j) { if (j==i) continue; if (cirint(p[i], r[i], p[j], r[j], a, b)) { e[ecnt++] = sp(a.x, a.y, atan2(a.y-p[i].y, a.x-p[i].x), 1); e[ecnt++] = sp(b.x, b.y, atan2(b.y-p[i].y, b.x-p[i].x), -1); if (sgn(e[ecnt-2].pa-e[ecnt-1].pa)>0) { e[0].cnt++; e[1].cnt--; } } } sort(e, e+ecnt); int cnt = e[0].cnt; for (j = 1; j < ecnt; ++j) { double pad = e[j].pa-e[j-1].pa; s[cover[i]+cnt] += (det(e[j-1], e[j])+r[i]*r[i]*(pad-sin(pad)))/2; cnt += e[j].cnt; } } }