摘要:
目录 gather squeeze expand sum contiguous softmax max argmax gather torch.gather(input,dim,index,out=None)。对指定维进行索引。比如4*3的张量,对dim=1进行索引,那么index的取值范围就是0~ 阅读全文
摘要:
相当于numpy中resize()的功能,但是用法可能不太一样。 我的理解是: 把原先tensor中的数据按照行优先的顺序排成一个一维的数据(这里应该是因为要求地址是连续存储的),然后按照参数组合成其他维度的tensor。比如说是不管你原先的数据是[[[1,2,3],[4,5,6]]]还是[1,2, 阅读全文
摘要:
好久没有写博客了,这一次就将最近看的pytorch 教程中的lstm+crf的一些心得与困惑记录下来。 原文 PyTorch Tutorials 参考了很多其他大神的博客,https://blog.csdn.net/cuihuijun1hao/article/details/79405740 htt 阅读全文
摘要:
久闻LSTM + CRF的效果强大,最近在看Pytorch官网文档的时候,看到了这段代码,前前后后查了很多资料,终于把代码弄懂了。我希望在后来人看这段代码的时候,直接就看我的博客就能完全弄懂这段代码。 看这个博客之前,我首先建议看看 Pytorch 关于Bi-LSTM + CRF的解释 看完再看看这 阅读全文
摘要:
由于之前的草稿都没了,现在只有重写…. 我好痛苦 本章只是对pytorch的常规操作进行一个总结,大家看过有脑子里有印象就好,知道有这么个东西,需要的时候可以再去详细的看,另外也还是需要在实战中多运用。 本章导视图 Tensor attributes: 在tensor attributes中有三个类 阅读全文
摘要:
做了一段时间的Sequence Labeling的工作,发现在NER任务上面,很多论文都采用LSTM-CRFs的结构。CRF在最后一层应用进来可以考虑到概率最大的最优label路径,可以提高指标。 一般的深度学习框架是没有CRF layer的,需要手动实现。最近在学习PyTorch,里面有一个Bi- 阅读全文
摘要:
一. BILSTM + CRF介绍 https://www.jianshu.com/p/97cb3b6db573 1.介绍 基于神经网络的方法,在命名实体识别任务中非常流行和普遍。 如果你不知道Bi-LSTM和CRF是什么,你只需要记住他们分别是命名实体识别模型中的两个层。 1.1开始之前 我们假设 阅读全文
摘要:
在刷官方Tutorial的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),看了官方教程里面的解释也是云里雾里,于是在栈溢网看到了一篇解释,并做了几个实验才算完全理解了这个函数。首先可以把这个函数理解为类型转换函 阅读全文
摘要:
动态 VS 静态深度学习工具集 Pytorch 是一个 动态 神经网络工具包. 另一个动态工具包的例子是 Dynet (我之所以提这个是因为使用 Pytorch 和 Dynet 是十分类似的. 如果你看过 Dynet 中的例子, 那么它将有可能对你在 Pytorch 下实现它有帮助). 与动态相反的 阅读全文
摘要:
pytorch实现BiLSTM+CRF用于NER(命名实体识别)在写这篇博客之前,我看了网上关于pytorch,BiLstm+CRF的实现,都是一个版本(对pytorch教程的翻译), 翻译得一点质量都没有,还有一些竟然说做得是词性标注,B,I,O是词性标注的tag吗?真是误人子弟。所以 自己打算写 阅读全文
摘要:
一、为什么RNN需要处理变长输入 假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示: 思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练样例长度不同的情况,这样我们就会很自然的进行padding,将短句子padding为跟最长的句子一样 阅读全文
摘要:
输入数据格式:input(seq_len, batch, input_size)h0(num_layers * num_directions, batch, hidden_size)c0(num_layers * num_directions, batch, hidden_size) 输出数据格式: 阅读全文
摘要:
class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维度 num_layers:lstm隐层的层数,默认为1 bias:False则bih=0和bhh=0. 默认为True batch_first 阅读全文
摘要:
在理解CRF的时候费了一些功夫,将一些难以理解的地方稍微做了下标注,隔三差五看看加强记忆, 代码是pytorch文档上的example 阅读全文
摘要:
介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional networks for semantic segmentation[C]. Computer Vision an 阅读全文
摘要:
目录 一 tf.contrib.layers中的具体函数介绍 1.tf.contrib.layers.conv2d()函数的定义如下: 2.tf.contrib.layers.max_pool2d()函数的定义如下: 3.tf.contrib.layers.avg_pool2d()函数定义 4.tf 阅读全文
摘要:
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解。google了一下,参考了网上一些朋友写得博客,结合自己的理解,差不多整明白了。 方法定义tf.nn.conv2d (input, filter 阅读全文
摘要:
tf.expand_dims() 转载:https://blog.csdn.net/jasonzzj/article/details/60811035 TensorFlow中,想要维度增加一维,可以使用tf.expand_dims(input, dim, name=None)函数。当然,我们常用tf 阅读全文
摘要:
继上文https://blog.csdn.net/weixin_42078618/article/details/82999906探讨了embedding层的降维效果,时隔一个月,分享一下嵌入层在NPL领域的巨大作用。 本文的发表建立在了解文本转向量(如one-hot)的用法的前提上。 首先,继续假 阅读全文
摘要:
函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None ) 参数说明: params: 表示完整的嵌入张量,或者除了第一维度之 阅读全文