中文实体标注平台

https://www.cnblogs.com/combfish/p/7830807.html

 

发现了一款比较方便标注的工具https://github.com/jiesutd/SUTDAnnotator ,使用python2编写的界面,相对比较轻量,适合个人使用。但如果是团体使用的,还是web界面的会比较好。
 
运行Annotator_backup.py得到如下界面:open导入文件,选中要标注的词语,按下已设定好的快捷键A-V,即可完成对应的标注
            
 修改添加上自己所需的实体名:在对应的快捷键的右边输入实体名,按下remap按钮即可重新分配快捷键对应的实体名
 导出结果:export
                    
                    
 
 
其他更详细的操作参照github中的描述
 
将标注好的ann文件转成常用的训练样本的格式,以下有python3实现
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import re
 
# txt2ner_train_data turn label str into ner trainable data
# s :labeled str  eg.'我来到[@1999年#YEAR*]的[@上海#LOC*]的[@东华大学#SCHOOL*]'
# save_path: ner_trainable_txt name
def str2ner_train_data(s,save_path):
    ner_data = []
    result_1 = re.finditer(r'\[\@', s)
    result_2 = re.finditer(r'\*\]', s)
    begin = []
    end = []
    for each in result_1:
        begin.append(each.start())
    for each in result_2:
        end.append(each.end())
    assert len(begin) == len(end)
    = 0
    = 0
    while i < len(s):
        if not in begin:
            ner_data.append([s[i], 0])
            = + 1
        else:
            ann = s[i + 2:end[j] - 2]
            entity, ner = ann.rsplit('#')
            if (len(entity) == 1):
                ner_data.append([entity, 'S-' + ner])
            else:
                if (len(entity) == 2):
                    ner_data.append([entity[0], 'B-' + ner])
                    ner_data.append([entity[1], 'E-' + ner])
                else:
                    ner_data.append([entity[0], 'B-' + ner])
                    for in range(1len(entity) - 1):
                        ner_data.append([entity[n], 'I-' + ner])
                    ner_data.append([entity[-1], 'E-' + ner])
 
            = end[j]
            = + 1
 
    = open(save_path, 'w', encoding='utf-8')
    for each in ner_data:
        f.write(each[0+ ' ' + str(each[1]))
        f.write('\n')
    f.close()
# txt2ner_train_data turn label str into ner trainable data
# file_path :labeled multi lines' txt  eg.'我来到[@1999年#YEAR*]的[@上海#LOC*]的[@东华大学#SCHOOL*]'
# save_path: ner_trainable_txt name
def txt2ner_train_data(file_path,save_path):
    fr=open(file_path,'r',encoding='utf-8')
    lines=fr.readlines()
    s=''
    for line in lines:
        line=line.replace('\n','')
        line=line.replace(' ','')
        s=s+line
    fr.close()
    str2ner_train_data(s, save_path)
 
if(__name__=='__main__'):
    = '我来到[@1999年#YEAR*]的[@上海#LOC*]的[@东华大学#SCHOOL*]'
    save_path = 's.txt'
    str2ner_train_data(s, save_path)
    file_path='D:\\codes\\python_codes\\SUTDAnnotator-master\\demotext\\ChineseDemo.txt.ann'
    txt2ner_train_data(file_path,'s1.txt')
 
posted @ 2019-09-04 15:25  交流_QQ_2240410488  阅读(613)  评论(0编辑  收藏  举报