深度学习的Xavier初始化方法
在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer。Tensorflow 官网的介绍为:
variance_scaling_initializer(
factor=2.0,
mode='FAN_IN',
uniform=False,
seed=None,
dtype=tf.float32
)
1
2
3
4
5
6
7
Returns an initializer that generates tensors without scaling variance.
When initializing a deep network, it is in principle advantageous to keep the scale of the input variance constant, so it does not explode or diminish by reaching the final layer. This initializer use the following formula:
if mode='FAN_IN': # Count only number of input connections.
n = fan_in
elif mode='FAN_OUT': # Count only number of output connections.
n = fan_out
elif mode='FAN_AVG': # Average number of inputs and output connections.
n = (fan_in + fan_out)/2.0
truncated_normal(shape, 0.0, stddev=sqrt(factor / n))
1
2
3
4
5
6
7
8
这段话可以理解为,通过使用这种初始化方法,我们能够保证输入变量的变化尺度不变,从而避免变化尺度在最后一层网络中爆炸或者弥散。
这个方法就是 Xavier 初始化方法,可以从以下这两篇论文去了解这个方法:
·X. Glorot and Y. Bengio. Understanding the difficulty of training deepfeedforward neural networks. In International Conference on Artificial Intelligence and Statistics, pages 249–256, 2010.
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast featureembedding. arXiv:1408.5093, 2014.
或者可以通过这些文章去了解:
CNN数值
三种权重的初始化方法
深度学习——Xavier初始化方法
---------------------
作者:路虽远在路上
来源:CSDN
原文:https://blog.csdn.net/u010185894/article/details/71104387
版权声明:本文为博主原创文章,转载请附上博文链接!
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步