Conv1D和Conv2D的区别
我的答案是,在Conv2D输入通道为1的情况下,二者是没有区别或者说是可以相互转化的。首先,二者调用的最后的代码都是后端代码(以TensorFlow为例,在tensorflow_backend.py里面可以找到):
x = tf.nn.convolution(
input=x,
filter=kernel,
dilation_rate=(dilation_rate,),
strides=(strides,),
padding=padding,
data_format=tf_data_format)
区别在于input和filter传递的参数不同,input不必说,filter=kernel是什么呢?
我们进入Conv1D和Conv2D的源代码看一下。他们的代码位于layers/convolutional.py里面,二者继承的都是基类_Conv(Layer)。进入_Conv类查看代码可以发觉以下代码:
self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
……#中间代码省略
input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (input_dim, self.filters)
我们假设,Conv1D的input的大小是(600,300),而Conv2D的input大小是(m,n,1),二者kernel_size为3。
进入conv_utils.normalize_tuple函数可以看到:
def normalize_tuple(value, n, name):
"""Transforms a single int or iterable of ints into an int tuple.
# Arguments
value: The value to validate and convert. Could an int, or any iterable
of ints.
n: The size of the tuple to be returned.
name: The name of the argument being validated, e.g. "strides" or
"kernel_size". This is only used to format error messages.
# Returns
A tuple of n integers.
# Raises
ValueError: If something else than an int/long or iterable thereof was
passed.
"""
if isinstance(value, int):
return (value,) * n
else:
try:
value_tuple = tuple(value)
except TypeError:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value))
if len(value_tuple) != n:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value))
for single_value in value_tuple:
try:
int(single_value)
except ValueError:
raise ValueError('The `' + name + '` argument must be a tuple of ' +
str(n) + ' integers. Received: ' + str(value) + ' '
'including element ' + str(single_value) + ' of type' +
' ' + str(type(single_value)))
return value_tuple
所以上述代码得到的kernel_size是kernel的实际大小,根据rank进行计算,Conv1D的rank为1,Conv2D的rank为2,如果是Conv1D,那么得到的kernel_size就是(3,)如果是Conv2D,那么得到的是(3,3)
input_dim = input_shape[channel_axis]
kernel_shape = self.kernel_size + (input_dim, self.filters)
又因为以上的inputdim是最后一维大小(Conv1D中为300,Conv2D中为1),filter数目我们假设二者都是64个卷积核。因此,Conv1D的kernel的shape实际为:
(3,300,64)
而Conv2D的kernel的shape实际为:
(3,3,1,64)
刚才我们假设的是传参的时候kernel_size=3,如果,我们将传参Conv2D时使用的的kernel_size设置为自己的元组例如(3,300),那么传根据conv_utils.normalize_tuple函数,最后的kernel_size会返回我们自己设置的元组,也即(3,300)那么Conv2D的实际shape是:
(3,300,1,64),也即这个时候的Conv1D的大小reshape一下得到,二者等价。
换句话说,Conv1D(kernel_size=3)实际就是Conv2D(kernel_size=(3,300)),当然必须把输入也reshape成(600,300,1),即可在多行上进行Conv2D卷积。
这也可以解释,为什么在Keras中使用Conv1D可以进行自然语言处理,因为在自然语言处理中,我们假设一个序列是600个单词,每个单词的词向量是300维,那么一个序列输入到网络中就是(600,300),当我使用Conv1D进行卷积的时候,实际上就完成了直接在序列上的卷积,卷积的时候实际是以(3,300)进行卷积,又因为每一行都是一个词向量,因此使用Conv1D(kernel_size=3)也就相当于使用神经网络进行了n_gram=3的特征提取了。这也是为什么使用卷积神经网络处理文本会非常快速有效的内涵。
---------------------
作者:哈哈进步
来源:CSDN
原文:https://blog.csdn.net/hahajinbu/article/details/79535172
版权声明:本文为博主原创文章,转载请附上博文链接!