【机器学习与R语言】2-懒惰学习K近邻(kNN)

1.理解使用KNN进行分类

KNN特点

  • 近邻分类器:一种懒惰学习器,即把未标记的案例归类为与它们最相似的带有标记的案例所在的类。当一个概念很难定义,但你看到它时知道它是什么,就适合用KNN分类。
  • KNN优点:简单有效;数据分布无要求;训练快
  • KNN缺点:不产生模型(发现特征间关系能力有限);分类慢;内存大;名义变量和缺失值需要处理
  • KNN算法将特征处理为一个多维特征空间内的坐标。如标记配料为水果、蔬菜和蛋白3种类型,每种配料有脆度crunshiness和甜度sweetness 2个维度特征,体现在坐标内就是x轴、y轴。

KNN步骤

1)计算距离

距离函数度量:如欧氏距离(最短的直线距离),曼哈顿距离(类似城市街区路线)。欧氏距离公式:
p,q为比较的案例,n为特征

假设我们已知葡萄、绿豆、坚果、橙子等食品的分类和特征(脆度和甜度),现在想知道已知特征(甜度=6,脆度=4)的西红柿属于哪一类?计算与它的几个近邻之间的欧氏距离:
image.png
若K=1,西红柿和orange最近,归类为水果;
若K=3,3个近邻为orange,grape,nuts,三者之间投票表决,2/3归为水果,因而西红柿归类为水果。

2)选择合适的K

  • 偏差-方差权衡:过拟合与欠拟合之间的平衡。选择一个大的K会减少噪音数据对模型的影响,但过大会导致模型总是预测数量占大多数的那个类(几乎每个训练案例都会投票表决),而非最近的邻居;较小的K值会给出更复杂的决策边界,可更精细的拟合训练数据,但K过小则会使得噪音数据或异常值过度影响案例的分类(比如贴错标签)。
    image.png

实际上,K的选取取决于学习概念的难度和训练集中案例的数量。一般,K为3-10。

  • 常见的方法是将k设为训练集中案例数量的平方根。
  • 另一种方法是基于多个测试数据集来测试多个K值,选择一个最好分类性能的K值。
  • 还有一种不常见的方法就是选择一个较大的K,再按距离远近来给一个权威投票。

3)数据准备

  • 特征标准化:将特征转换为一个标准范围内,使得特征对距离公式的贡献相对平均。如不转换,距离度量会被较大的特征值支配
  • min-max标准化(0-1范围):特征的每一个值(x-min(x))/(max(x)-min(x))
  • z-score标准化(mean=0,sd=1,无边界):(x-mean(x))/(sd(x))
  • 名义变量的距离计算:利用哑变量编码,如男/女=1/0,不需要标准化(若是有序且步长相等的名义特征,则需要转换)
  • 懒惰学习算法(基于实例的学习/机械学习):没有抽象化步骤,跳过了抽象过程和一般化过程。仅仅存储训练集,所以训练很快,但预测较慢。是非参数学习方法,即没有需要学习的数据参数。

2.用KNN诊断乳腺癌

1)收集数据

数据:569例细胞活检案例,每个案例32个特征(其中包含一个编号,一个癌症诊断结果:良性B/恶性M),使用KNN算法来识别肿瘤是恶性还是良性?
获取途径1:http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/
获取途径2:以下链接下载wisc_bc_data.csv

链接: https://pan.baidu.com/s/1Kdj6T8mp7YKraRLxEg3u1g 提取码: 9auq

2)探索和准备数据

查看数据,注意去除ID特征。
构造训练集和测试集最好都是来自数据全集的一个有代表性的子集(事先随机顺序)。

## Example: Classifying Cancer Samples ----
## Step 2: Exploring and preparing the data ---- 

# import the CSV file
wbcd <- read.csv("wisc_bc_data.csv", stringsAsFactors = FALSE)

# examine the structure of the wbcd data frame
str(wbcd)

# drop the id feature
wbcd <- wbcd[-1]

# table of diagnosis
table(wbcd$diagnosis)

# recode diagnosis as a factor
wbcd$diagnosis <- factor(wbcd$diagnosis, levels = c("B", "M"),
                         labels = c("Benign", "Malignant"))

# table or proportions with more informative labels
round(prop.table(table(wbcd$diagnosis)) * 100, digits = 1)

# summarize three numeric features
summary(wbcd[c("radius_mean", "area_mean", "smoothness_mean")])

# create normalization function
normalize <- function(x) {
  return ((x - min(x)) / (max(x) - min(x)))
}

# test normalization function - result should be identical
normalize(c(1, 2, 3, 4, 5))
normalize(c(10, 20, 30, 40, 50))


# normalize the wbcd data
wbcd_n <- as.data.frame(lapply(wbcd[2:31], normalize))

# confirm that normalization worked
summary(wbcd_n$area_mean)

# create training and test data
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]

# create labels for training and test data

wbcd_train_labels <- wbcd[1:469, 1]
wbcd_test_labels <- wbcd[470:569, 1]

3)训练模型

K最好使用奇数,这样会减少各个类票数相等的情况发生的可能性(如西红柿示例中K=2时)。

## Step 3: Training a model on the data ----

# load the "class" library
library(class)

wbcd_test_pred <- knn(train = wbcd_train, 
                      test = wbcd_test,
                      cl = wbcd_train_labels, 
                      k = 21)  #训练集案例的平方根floor(sqrt(469))

4)评估模型的性能

即评估预测分类与测试分类中已知值得匹配程度。预测设计假阳性FP比率和假阴性FN比率之间的平衡。

乳腺癌分类的假阴性比假阳性付出的代价更大,即把恶性判断为良性。

## Step 4: Evaluating model performance ----

# load the "gmodels" library
library(gmodels)

# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)

image.png

5)提高模型性能

①尝试将min-max标准化改为z-score标准化

## Step 5: Improving model performance ----

# use the scale() function to z-score standardize a data frame
wbcd_z <- as.data.frame(scale(wbcd[-1]))

# confirm that the transformation was applied correctly
summary(wbcd_z$area_mean)

# create training and test datasets
wbcd_train <- wbcd_z[1:469, ]
wbcd_test <- wbcd_z[470:569, ]

# re-classify test cases
wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test,
                      cl = wbcd_train_labels, k = 21)

# Create the cross tabulation of predicted vs. actual
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred,
           prop.chisq = FALSE)

image.png

正确分类从98%降为95%,且假阴性从2%提升到了5%,效果更差。

②尝试不同的K值

# try several different values of k
wbcd_train <- wbcd_n[1:469, ]
wbcd_test <- wbcd_n[470:569, ]

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=1)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=5)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=11)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=15)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=21)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

wbcd_test_pred <- knn(train = wbcd_train, test = wbcd_test, cl = wbcd_train_labels, k=27)
CrossTable(x = wbcd_test_labels, y = wbcd_test_pred, prop.chisq=FALSE)

以上结果中,虽然K=1时的假阴性率最低,但是以增加假阳性结果为代价的。注意不能为了过于准确预测测试集来随意调整方法。

尽管kNN算法简单,但它能处理复杂的任务。


机器学习与R语言系列推文汇总:
【机器学习与R语言】1-机器学习简介
【机器学习与R语言】2-K近邻(kNN)
【机器学习与R语言】3-朴素贝叶斯(NB)
【机器学习与R语言】4-决策树
【机器学习与R语言】5-规则学习
【机器学习与R语言】6-线性回归
【机器学习与R语言】7-回归树和模型树
【机器学习与R语言】8-神经网络
【机器学习与R语言】9-支持向量机
【机器学习与R语言】10-关联规则
【机器学习与R语言】11-Kmeans聚类
【机器学习与R语言】12-如何评估模型的性能?
【机器学习与R语言】13-如何提高模型的性能?

posted @ 2020-08-30 20:36  生物信息与育种  阅读(1738)  评论(0编辑  收藏  举报