[AI] 深度数学 - Bayes
数学似宇宙,韭菜只关心其中实用的部分。
scikit-learn (sklearn) 官方文档中文版
scikit-learn Machine Learning in Python
一个新颖的online图书资源集,非常棒。
Bayesian Machine Learning
9. [Bayesian] “我是bayesian我怕谁”系列 - Gaussian Process【ignore】
随机过程
[Scikit-learn] 1.1 Generalized Linear Models - Bayesian Ridge Regression【等价效果】
8. [Bayesian] “我是bayesian我怕谁”系列 - Variational Autoencoders
稀疏表达
[UFLDL] *Sparse Representation【稀疏表达】
7. [Bayesian] “我是bayesian我怕谁”系列 - Boltzmann Distribution【ignore】
贝叶斯网络
[Scikit-learn] Dynamic Bayesian Network - Conditional Random Field【去噪、词性标注】
6. [Bayesian] “我是bayesian我怕谁”系列 - Markov and Hidden Markov Models【隐马及其扩展】
时序模型
[Scikit-learn] Dynamic Bayesian Network - HMM【基础实践】
[Scikit-learn] Dynamic Bayesian Network - Kalman Filter【车定位预测】
[Scikit-learn] *Dynamic Bayesian Network - Partical Filter【机器人自我定位】
5. [Bayesian] “我是bayesian我怕谁”系列 - Continuous Latent Variables【降维:PCA, PPCA, FA, ICA】
概率降维
[Scikit-learn] 4.4 Dimensionality reduction - PCA
[Scikit-learn] 2.5 Dimensionality reduction - Probabilistic PCA & Factor Analysis
[Scikit-learn] 2.5 Dimensionality reduction - ICA
[Scikit-learn] 1.2 Dimensionality reduction - Linear and Quadratic Discriminant Analysis
4. [Bayesian] “我是bayesian我怕谁”系列 - Variational Inference【公式推导解读】
概率聚类
[Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
[Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture
3. [Bayesian] “我是bayesian我怕谁”系列 - Latent Variables【概念解读】
隐变量模型
[Bayes] Concept Search and LSI
[Bayes] Concept Search and PLSA
[Bayes] Concept Search and LDA
2. [Bayesian] “我是bayesian我怕谁”系列 - Exact Inference【ignore】
1. [Bayesian] “我是bayesian我怕谁”系列 - Naive Bayes with Prior【贝叶斯在文本分类的极简例子】
朴素贝叶斯
[ML] Naive Bayes for Text Classification【原理概览】
[Bayes] Maximum Likelihood estimates for text classification【代码实现】
[Scikit-learn] 1.9 Naive Bayes【不同先验的朴素贝叶斯】
常见分布关系
<Statistical Inference> goto: 647/686
先验分布与后验分布
[Math] From Prior to Posterior distribution【先验后验基础知识】
[Bayes] qgamma & rgamma: Central Credible Interval【后验区间估计】
[Bayes] Multinomials and Dirichlet distribution【狄利克雷分布】
其中两个概念比较重要:
-
-
- 无信息先验分布 (Non-informative prior)
- Jeffreys先验分布 (Jeffreys prior)
-
后验即是:贝叶斯统计推断
-
-
- 后验分布与充分性 (Posterior distribution and sufficiency)
- 无信息先验下的后验分布 (Posterior distribution with noninformative prior)
- 共轭先验下的后验分布 (Posterior distribution with conjugate prior)
-
结合损失函数:贝叶斯统计决策
-
-
- 平方损失 (square loss)
- 加权平方损失 (weighted squared loss)
- 绝对值损失 (absolute loss)
- 线性损失函数 (linear loss function)
-
抽样方法
一种逼近求值策略:贝叶斯计算方法
-
- [Bayes] What is Sampling【采样法大纲】
- 直接抽样法 & 可视化方法
- [Bayes] Point --> Line: Estimate "π" by R【撒点逼近Pi值 - 可视化 by line】
- [Bayes] Point --> Hist: Estimate "π" by R【撒点逼近Pi值 - 可视化 by hist】
- [Bayes] runif: Inversion Sampling【利用反函数的技巧采样】
-
- 接受-拒绝抽样(Acceptance-Rejection sampling)
- 重要性抽样(Importance sampling)
-
- MCMC抽样方法
[Bayes] MCMC (Markov Chain Monte Carlo)【利用了马尔科夫的平稳性】
(a). Metropolis-Hasting算法
(b). Gibbs采样算法
-
- 采样估参
- [Bayes] Parameter estimation by Sampling【估计出概率分布函数,期望就是参数估值】
- 采样估参
其他未整理
non-Bayesian Machine Learning
Algorithm Outline
[ML] Roadmap: a long way to go【学习路线北斗导航】
基本概念
[UFLDL] Basic Concept【基本ML概念】
基本算法
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Regression
[Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification
Online Learning
[Scikit-learn] 1.1 Generalized Linear Models - Comparing various online solvers
[Scikit-learn] Yield miniBatch for online learning.
线性问题
[UFLDL] Linear Regression & Classification
线性拟合
[Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2【最小二乘 --> 正则化】
[Scikit-learn] 1.1 Generalized Linear Models - Lasso Regression【L2相关“内容”,正则化分类当然也可以用】
[ML] Bayesian Linear Regression【增量在线学习的例子】
[Scikit-learn] 1.4 Support Vector Regression【依据最外边距】
[Scikit-learn] Theil-Sen Regression【抗噪能力较好】
线性分类
# Discriminative Models
[Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax【转化为最大似然,也可以将参数“正则”】
[Scikit-learn] 1.1 Generalized Linear Models - Neural network models【MLP多层感知机】
[ML] Bayesian Logistic Regression【统计分类方法的区别】
[Scikit-learn] 1.4 Support Vector Regression【线性可分】
# Generative Models
Naive Bayes【参见 "贝叶斯机器学习"】
[ML] Linear Discriminant Analysis【ing】
决策树
[ML] Decision Tree & Ensembling Metholds【Bagging pk Boosting pk SVM】
降维
[UFLDL] Dimensionality Reduction【广义降维方法概述】
聚类
[Scikit-learn] 2.3 Clustering - kmeans
[Scikit-learn] 2.3 Clustering - Spectral clustering
[Scikit-learn] *2.3 Clustering - DBSCAN: Density-Based Spatial Clustering of Applications with Noise
[Scikit-learn] *2.3 Clustering - MeanShift
End.