本人AI知识体系导航 - AI menu
- 如果能再给我一次机会,我会这么选课,韭菜不要多问为什么。
s1 COMP9021 - Principles of Programming COMP9417 - Machine Learning and Data Mining COMP9814 - Extended Artificial Intelligence GSOE9820 - Engineering Project Management s2 COMP9024 - Data Structures and Algorithms COMP6771 - Advanced C++ Programming COMP9517 - Computer Vision MATH5905 - Statistical Inference s3 COMP9801 - Extended Design & Analysis of Algorithms COMP9318 - Data Warehousing and Data Mining COMP9319 - Web Data Compression and Search MATH5960 - Bayesian inference and Computation s4 COMP9313 - Big Data Management COMP9418 - Advanced Topics in Statistical Machine Learning COMP9444 - Neural Networks COMP9900 - Information Technology Project
- 如果能再给我一次机会,我会首选ThinkPad。
中端P系列,或者高端T系列。
Relevant Readable Links
Name |
Interesting topic |
Comment |
学习目标:Dirichlet Process, HDP, HDP-HMM, IBP, CRM | ||
Geometry and Uncertainty in Deep Learning for Computer Vision |
语义分割 | |
|
general CV | |
目标定位 | ||
DL, CV and the algorithms that are shaping the future of AI. |
Others:
http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html【理论总结挺好】
http://www.cnblogs.com/charlotte77/【统计机器学习,可能实用】
http://blog.csdn.net/zhangjunhit/article/list/1【论文阅读笔记不错】
专注于数据分析之Kaggle and 图像处理之AR on phone
How to be a Top AR Full-Stack Developer
正如该链接中所言,学习了哪些知识,计算机视觉才算入门?
计算机视觉涉及面甚广,找到一类问题好好研究并实践就好,这类问题在本博客就指AR问题。
Ref: 计算机视觉入门书?
列出现代计算机视觉体系的主要科目(知识点)及其递进关系。
一个单元代表一门course (12 weeks)或者一本book (600 pages)的学习量,亲测。
循序渐进很重要,后辈务必去掉大跃进的念头。
人工智能之计算机视觉 - 学术体系 | ||||
第四层 | 计算机视觉:模型,学习,推理 | |||
第三层 | 统计机器学习 | 深度学习 | ||
第二层 | 机器学习入门 | 计算机视觉入门 | ||
第一层 | 统计推断 | 贝叶斯分析 | 多元线性分析 | 凸优化 |
编程是基本功,无须赘述。
人工智能之计算机视觉 - 软件工程 | ||||
第四层 | 实践!实践!实践! | |||
第三层 | Android API, RN, OpenCV, Scikit-learning, ARToolkit, Unity | |||
第二层 | 软件架构,设计模式,代码管理,单元测试 | |||
第一层 | C/C++, Python, Java, Kotlin, Javascript, SQL |
如上,乃基本的学习路线,仅是参考,仍可细分,但基本上具备了AR全栈开发者的潜力。
Phones with ARCore support, Feb, 2018
Indoor navigation app: you'll never be lost again
Inside Navigation【好东西,但时机不对】
My Hierarchy of AI Knowledge
实践阶段
如果你想要一个能走到冰箱面前而不撞到墙壁的机器人,那就使用 SLAM。
如果你想要一个能识别冰箱中各种物品的机器人,那就使用 Deep Learning。
基本上,这算一个风口;仅指路,不领路,需深耕。
增强现实 - Deep Learning 识别
综述:
[Object Tracking] Overview of Object Tracking
[Object Tracking] Overview of algorithms for Object Tracking
轮廓识别:
[Object Tracking] Active contour model - Snake Model
[Object Tracking] Deep Boundary detection Tech
[Object Tracking] Contour Detection through Tensorflow running on smartphone
[Object Tracking] Contour Detection through OpenCV
目标定位:
[OpenCV] Real-time object detection with dnn module in OpenCV 3.3
[Localization] SSD - Single Shot MultiBoxDetector
[Localization] MobileNet with SSD
[Tensorflow] Android Meets TF in TensorFlow Dev Summit 2017
[Tensorflow] Object Detection API - prepare your training data
[Tensorflow] Object Detection API - build your training environment
[Tensorflow] Object Detection API - predict through your exclusive model
[Tensorflow] Object Detection API - retrain mobileNet
[Tensorflow] Object Detection API - mobileNet_v1.py
[Object Tracking] Identify and Track Specific Object
增强现实 - SLAM 跟踪
[SLAM] 01. "Simultaneous Localization and Mapping"
[SLAM] 02. Some basic algorithms of 3D reconstruction
[SLAM] AR Tracking based on which tools?
[ARCORE, Continue...]
冲刺阶段
已看到收敛趋势,查缺补漏,攻克难点疑点。
融会贯通方可运用自如,解决新问题。
生成式网络 - Conv & Deconv
[Paper] Before GAN: sparse coding
Continue...
深度学习概念 - UFLDL
[UFLDL] Linear Regression & Classification
[UFLDL] Dimensionality Reduction
深度学习理论 - Stats 385
[Stats385] Lecture 01-02, warm up with some questions
[Stats385] Lecture 03, Harmonic Analysis of Deep CNN
[Stats385] Lecture 04: Convnets from Probabilistic Perspective
[Stats385] Lecture 05: Avoid the curse of dimensionality
【暂时不实用,点到为止】
统计机器学习 - PRML
混沌阶段
打地基,处于强化学习初期的不稳定阶段,感谢马尔科夫收敛的性质,目标已收敛;自下向上,基本遵循循序渐进的学习过程,夯实知识体系。
了解领域内的疑难点,认识技术细节的价值,为下一阶段做准备。
内容多为早年整理,倾向于参考价值。
Bayesian Analysis
R与采样方法:
[Bayes] Point --> Line: Estimate "π" by R
[Bayes] Point --> Hist: Estimate "π" by R
[Bayes] qgamma & rgamma: Central Credible Interval
[Bayes] Hist & line: Reject Sampling and Importance Sampling
[Bayes] runif: Inversion Sampling
[Bayes] dchisq: Metropolis-Hastings Algorithm
[Bayes] prod: M-H: Independence Sampler for Posterior Sampling
[Bayes] Metroplis Algorithm --> Gibbs Sampling
[Bayes] Parameter estimation by Sampling
[Bayes] openBUGS: this is not the annoying bugs in programming
[PGM] What is Probabalistic Graphical Models
[PGM] Bayes Network and Conditional Independence
贝叶斯基础:
[BOOK] Applied Math and Machine Learning Basics
[Bayes] Multinomials and Dirichlet distribution
[Bayes] Understanding Bayes: A Look at the Likelihood
[Bayes] Understanding Bayes: Updating priors via the likelihood
[Bayes] Understanding Bayes: Visualization of the Bayes Factor
[Bayes] Why we prefer Gaussian Distribution
[Bayes] Improve HMM step by step
[Math] Unconstrained & Constrained Optimization
[Bayes] KL Divergence & Evidence Lower Bound
[Bayes] Variational Inference for Bayesian GMMs
[Bayes] Latent Gaussian Process Models
学习指南:
[Math] A love of late toward Mathematics - how to learn it?
[Bayes ML] This is Bayesian Machine Learning 【原文总结得相当好】
Deep Learning
理论:
[BOOK] Applied Math and Machine Learning Basics 【DL书基础,1至5章笔记】
[Hinton] Neural Networks for Machine Learning - Basic
[Hinton] Neural Networks for Machine Learning - Converage
[Hinton] Neural Networks for Machine Learning - RNN
[Hinton] Neural Networks for Machine Learning - Bayesian
[Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine
编程:
[Tensorflow] Architecture - Computational Graphs 【TF 框架】
[Tensorflow] Practice - The Tensorflow Way 【相对基础】
[Tensorflow] Cookbook - The Tensorflow Way 【前者的 Detail】
[Tensorflow] Cookbook - Neural Network 【代码基础写法】
[Tensorflow] Cookbook - CNN 【卷积网络专题】
[Tensorflow] Cookbook - Object Classification based on CIFAR-10
[Tensorflow] Cookbook - Retraining Existing CNNs models - Inception Model
[Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell
[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM
[Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction
[Tensorflow] RNN - 04. Work with CNN for Text Classification
[TensorBoard] Cookbook - Tensorboard
[TensorBoard] Train and Test accuracy simultaneous tracking
[TensorBoard] Name & Variable scope
训练:
[Converge] Gradient Descent - Several solvers
[Converge] Backpropagation Algorithm 【BP实现细节】
[Converge] Feature Selection in training of Deep Learning 【特性相关性的影响】
[Converge] Training Neural Networks 【cs231n-lec5&6,推荐】
[Converge] Batch Normalisation
卷积:
[CNN] What is Convolutional Neural Network 【导论】
[CNN] Understanding Convolution 【图像角度理解】
[CNN] Tool - Deep Visualization
模型:
[Localization] R-CNN series for Localization and Detection
[Localization] YOLO: Real-Time Object Detection
[Localization] SSD - Single Shot MultiBoxDetector
[Localization] MobileNet with SSD
其他:
[GPU] CUDA for Deep Learning, why?
[GPU] DIY for Deep Learning Workstation
[Keras] Install and environment setting
[Keras] Develop Neural Network With Keras Step-By-Step
[GAN] *What is Generative networks 【导论,”生成式模型“有哪些,与”判别式模型“同级】
[GAN] How to use GAN - Meow Generator
[DQN] What is Deep Reinforcement Learning 【导论:此方向优先级低】
[Understanding] Compressive Sensing and Deep Model 【感知压缩,暂且不懂】
[DL] *Deep Learning for Industry - Wang Yi 【课外阅读】
Machine Learning
/* ML文件夹待整理 */
IR & NLP基础
检索:
[IR] Tolerant Retrieval & Spelling Correction & Language Model
[IR] Open Source Search Engines
压缩:
[IR] Advanced XML Compression - ISX
[IR] Advanced XML Compression - XBW
[IR] Bigtable: A Distributed Storage System for Semi-Structured Data
[IR] Suffix Trees and Suffix Arrays
[IR] Time and Space Efficiencies Analysis of Full-Text Index Techniques
[IR] Extraction-based Text Summarization
其他:
【以上内容需随recommended system一起再过一遍,完善体系】
AR基础
[Artoolkit] ARToolKit's SDK Structure on Android
[Artoolkit] Framework Analysis of nftSimple
[Artoolkit] kpmMatching & Tracking of nftSimple
[Artoolkit] Android Sample of nftSimple
[Artoolkit] Can I Use LGPL code for commercial application
[Artoolkit] Marker of nftSimple
[Artoolkit] ARSimpleNativeCarsProj for Multi Markers Tracking
[Unity3D] 02 - ** Editor Scripting, Community Posts, Project Architecture
[Unity3D] 03 - Component of UI
[Unity3D] 05 - Access to DB or AWS
【简单涉及3D建模知识点,非重点】
CV基础
概念:
[OpenCV] Install openCV in Qt Creator
[OpenCV] Basic data types - Matrix
[OpenCV] IplImage and Operation
[OpenCV] Image Processing - Image Elementary Knowledge
[OpenCV] Image Processing - Grayscale Transform
[OpenCV] Image Processing - Frequency Domain Filtering
[OpenCV] Image Processing - Spatial Filtering
[OpenCV] Image Processing - Fuzzy Set
实践:
// 内容将合并,重新整理
[OpenCV] Samples 01: drawing【几何图案、文字等】
[OpenCV] Samples 02: [ML] kmeans【聚类算法】
[OpenCV] Samples 03: cout_mat【Mat计算能力】
[OpenCV] Samples 04: contours2【二值图案找轮廓】
[OpenCV] Samples 05: convexhull【散点的凸包轮廓】
[OpenCV] Samples 06: [ML] logistic regression【线性二分类】
[OpenCV] Samples 07: create_mask【鼠标圈图】
[OpenCV] Samples 08: edge【边缘检测】
[OpenCV] Samples 09: plImage <==> Mat 【色域通道分离】
[OpenCV] Samples 10: imagelist_creator【图片地址list参数】
[OpenCV] Samples 11: image sequence【视频流提取】
[OpenCV] Samples 12: laplace【视频流处理】
[OpenCV] Samples 13: opencv_version【版本信息显示】
[OpenCV] Samples 14: kalman filter【预测下一个状态】
[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models【背景差分】
[OpenCV] Samples 16: Decompose and Analyse RGB channels【色域通道分离】
[OpenCV] Samples 17: Floodfill【聚类算法】
[OpenCV] Samples 18: Load image and check its attributes【图片属性】
扩展:
[Android Studio] Using Java to call OpenCV
[Android Studio] Using NDK to call OpenCV
[OpenCV] Install OpenCV 3.3 with DNN
[OpenCV] Install OpenCV 3.4 with DNN
趣码收集:
[Link] Face Swap Collection
[Link] Face Swap without DLIB【代码可用】
算法基础
[Algorithm] Deferred Acceptance Algorithm
[Algorithm] Beating the Binary Search algorithm – Interpolation Search, Galloping Search
[Algorithm] Asymptotic Growth Rate
[Algorithm] Polynomial and FFT
[Algorithm] String Matching and Hashing
[Optimization] Dynamic programming
[Optimization] Advanced Dynamic programming
Everything here starts from 2016