本人AI知识体系导航 - AI menu

  • 如果能再给我一次机会,我会这么选课,韭菜不要多问为什么。
复制代码
s1 
COMP9021 - Principles of Programming

COMP9417 - Machine Learning and Data Mining

COMP9814 - Extended Artificial Intelligence

GSOE9820 - Engineering Project Management

s2
COMP9024 - Data Structures and Algorithms

COMP6771 - Advanced C++ Programming

COMP9517 - Computer Vision

MATH5905 - Statistical Inference

s3
COMP9801 - Extended Design & Analysis of Algorithms

COMP9318 - Data Warehousing and Data Mining

COMP9319 - Web Data Compression and Search

MATH5960 - Bayesian inference and Computation

s4 
COMP9313 - Big Data Management

COMP9418 - Advanced Topics in Statistical Machine Learning

COMP9444 - Neural Networks

COMP9900 - Information Technology Project
View Code
复制代码

 

  • 如果能再给我一次机会,我会首选ThinkPad。

中端P系列,或者高端T系列。

 

 

 

Relevant Readable Links

 

  

Others:

http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html【理论总结挺好】 

http://www.cnblogs.com/charlotte77/【统计机器学习,可能实用】

http://blog.csdn.net/zhangjunhit/article/list/1【论文阅读笔记不错】

 

 

专注于数据分析之Kaggle and 图像处理之AR on phone

 


 

How to be a Top AR Full-Stack Developer

 

正如该链接中所言,学习了哪些知识,计算机视觉才算入门?

计算机视觉涉及面甚广,找到一类问题好好研究并实践就好,这类问题在本博客就指AR问题。

Ref: 计算机视觉入门书?

 

列出现代计算机视觉体系的主要科目(知识点)及其递进关系。

一个单元代表一门course (12 weeks)或者一本book (600 pages)的学习量,亲测。

循序渐进很重要,后辈务必去掉大跃进的念头。

人工智能之计算机视觉 - 学术体系
第四层 计算机视觉:模型,学习,推理
第三层 统计机器学习 深度学习
第二层 机器学习入门 计算机视觉入门
第一层 统计推断 贝叶斯分析 多元线性分析 凸优化

 

编程是基本功,无须赘述。

人工智能之计算机视觉 - 软件工程
第四层 实践!实践!实践!
第三层 Android API, RN, OpenCV, Scikit-learning, ARToolkit, Unity
第二层 软件架构,设计模式,代码管理,单元测试
第一层 C/C++, Python, Java, Kotlin, Javascript, SQL

 

如上,乃基本的学习路线,仅是参考,仍可细分,但基本上具备了AR全栈开发者的潜力。

 

Phones with ARCore support, Feb, 2018

Indoor navigation app: you'll never be lost again

Inside Navigation【好东西,但时机不对】

 


 

My Hierarchy of AI Knowledge

实践阶段

如果你想要一个能走到冰箱面前而不撞到墙壁的机器人,那就使用 SLAM。

如果你想要一个能识别冰箱中各种物品的机器人,那就使用 Deep Learning。

基本上,这算一个风口;仅指路,不领路,需深耕。

 

增强现实 - Deep Learning 识别

综述:

[Object Tracking] Overview of Object Tracking

[Object Tracking] Overview of algorithms for Object Tracking

 

轮廓识别:

[Object Tracking] Active contour model - Snake Model

[Object Tracking] Deep Boundary detection Tech

[Object Tracking] Contour Detection through Tensorflow running on smartphone

[Object Tracking] Contour Detection through OpenCV

 

目标定位:

[OpenCV] Real-time object detection with dnn module in OpenCV 3.3

[Localization] SSD - Single Shot MultiBoxDetector

[Localization] MobileNet with SSD

[Tensorflow] Android Meets TF in TensorFlow Dev Summit 2017

 

[Tensorflow] Object Detection API - prepare your training data

[Tensorflow] Object Detection API - build your training environment

[Tensorflow] Object Detection API - predict through your exclusive model

[Tensorflow] Object Detection API - retrain mobileNet

[Tensorflow] Object Detection API - mobileNet_v1.py

 

[Object Tracking] Identify and Track Specific Object

[Object Tracking] MeanShift

 

增强现实 - SLAM 跟踪

[SLAM] 01. "Simultaneous Localization and Mapping"

[SLAM] 02. Some basic algorithms of 3D reconstruction

[SLAM] 03. ORB-SLAM2

[SLAM] AR Tracking based on which tools?

[ARCORE, Continue...]

 

 

 

冲刺阶段

已看到收敛趋势,查缺补漏,攻克难点疑点。

融会贯通方可运用自如,解决新问题。

  

生成式网络 - Conv & Deconv

[Paper] Before GAN: sparse coding

Continue... 

 

深度学习概念 - UFLDL

[UFLDL] Basic Concept

[UFLDL] Linear Regression & Classification

[UFLDL] Dimensionality Reduction

[UFLDL] Generative Model

[UFLDL] Sparse Representation

[UFLDL] ConvNet

[UFLDL] Train and Optimize

 

深度学习理论 - Stats 385

[Stats385] Lecture 01-02, warm up with some questions

[Stats385] Lecture 03, Harmonic Analysis of Deep CNN

[Stats385] Lecture 04: Convnets from Probabilistic Perspective

[Stats385] Lecture 05: Avoid the curse of dimensionality

【暂时不实用,点到为止】

 

统计机器学习 - PRML

  

 

  

混沌阶段

打地基,处于强化学习初期的不稳定阶段,感谢马尔科夫收敛的性质,目标已收敛;自下向上,基本遵循循序渐进的学习过程,夯实知识体系。

了解领域内的疑难点,认识技术细节的价值,为下一阶段做准备。

内容多为早年整理,倾向于参考价值。

 

Bayesian Analysis

R与采样方法:

[Bayes] What is Sampling

[Bayes] Point --> Line: Estimate "π" by R

[Bayes] Point --> Hist: Estimate "π" by R

[Bayes] qgamma & rgamma: Central Credible Interval

[Bayes] Hist & line: Reject Sampling and Importance Sampling

[Bayes] runif: Inversion Sampling

[Bayes] dchisq: Metropolis-Hastings Algorithm

[Bayes] prod: M-H: Independence Sampler for Posterior Sampling

[Bayes] Metroplis Algorithm --> Gibbs Sampling

[Bayes] Parameter estimation by Sampling

[Bayes] openBUGS: this is not the annoying bugs in programming

 
PGM基础:
 

贝叶斯基础:

[BOOK] Applied Math and Machine Learning Basics

[Bayes] Multinomials and Dirichlet distribution

[Bayes] Understanding Bayes: A Look at the Likelihood

[Bayes] Understanding Bayes: Updating priors via the likelihood

[Bayes] Understanding Bayes: Visualization of the Bayes Factor

[Bayes] Why we prefer Gaussian Distribution

[Bayes] Improve HMM step by step

[Math] Unconstrained & Constrained Optimization

[Bayes] KL Divergence & Evidence Lower Bound

[Bayes] Variational Inference for Bayesian GMMs

[Bayes] Latent Gaussian Process Models

 

学习指南: 

[Math] A love of late toward Mathematics - how to learn it?

[Bayes ML] This is Bayesian Machine Learning 【原文总结得相当好】

 

 

Deep Learning

理论:

[BOOK] Applied Math and Machine Learning Basics             【DL书基础,1至5章笔记】

[Hinton] Neural Networks for Machine Learning - Basic

[Hinton] Neural Networks for Machine Learning - Converage

[Hinton] Neural Networks for Machine Learning - RNN

[Hinton] Neural Networks for Machine Learning - Bayesian

[Hinton] Neural Networks for Machine Learning - Hopfield Nets and Boltzmann Machine

 

编程:

[Tensorflow] Architecture - Computational Graphs   【TF 框架】 

[Tensorflow] Practice - The Tensorflow Way       【相对基础】

[Tensorflow] Cookbook - The Tensorflow Way   【前者的 Detail】

[Tensorflow] Cookbook - Neural Network           【代码基础写法】

[Tensorflow] Cookbook - CNN                            【卷积网络专题】

[Tensorflow] Cookbook - Object Classification based on CIFAR-10

[Tensorflow] Cookbook - Retraining Existing CNNs models - Inception Model

 

[Tensorflow] RNN - 01. Spam Prediction with BasicRNNCell

[Tensorflow] RNN - 02. Movie Review Sentiment Prediction with LSTM

[Tensorflow] RNN - 03. MultiRNNCell for Digit Prediction

[Tensorflow] RNN - 04. Work with CNN for Text Classification

 

[TensorBoard] Cookbook - Tensorboard

[TensorBoard] Train and Test accuracy simultaneous tracking

[TensorBoard] Name & Variable scope

 

训练:

[Converge] Gradient Descent - Several solvers

[Converge] Weight Initialiser

[Converge] Backpropagation Algorithm 【BP实现细节】

[Converge] Feature Selection in training of Deep Learning 【特性相关性的影响】

[Converge] Training Neural Networks 【cs231n-lec5&6,推荐】

[Converge] Batch Normalisation

 

卷积:

[CNN] What is Convolutional Neural Network 【导论】

[CNN] Understanding Convolution 【图像角度理解】

[CNN] Tool - Deep Visualization

 

模型:

[Model] LeNet-5 by Keras

[Model] AlexNet

[Model] VGG16

[Model] GoogLeNet

[Model] ResNet  

[Localization] R-CNN series for Localization and Detection

[Localization] YOLO: Real-Time Object Detection

[Localization] SSD - Single Shot MultiBoxDetector

[Localization] MobileNet with SSD

 

其他:

[GPU] CUDA for Deep Learning, why?

[GPU] DIY for Deep Learning Workstation

[Keras] Install and environment setting

[Keras] Develop Neural Network With Keras Step-By-Step 

[GAN] *What is Generative networks 【导论,”生成式模型“有哪些,与”判别式模型“同级】

[GAN] How to use GAN - Meow Generator 

[DQN] What is Deep Reinforcement Learning 【导论:此方向优先级低】

[Understanding] Compressive Sensing and Deep Model 【感知压缩,暂且不懂】

[DL] *Deep Learning for Industry - Wang Yi 【课外阅读】

  

 

Machine Learning

  

/* ML文件夹待整理 */

 

 

IR & NLP基础

检索:

[IR] Boolean retrieval

[IR] Index Construction

[IR] Compression

[IR] Tolerant Retrieval & Spelling Correction & Language Model

[IR] Probabilistic Model

[IR] Link Analysis

[IR] Ranking - top k

[IR] Evaluation

[IR] Information Extraction

[IR] Open Source Search Engines

[IR] Search Server - Sphinx

[IR] Concept Search and LSI

[IR] Concept Search and PLSA

[IR] Concept Search and LDA

 

压缩:

[IR] What is XML

[IR] XML Compression

[IR] Advanced XML Compression - ISX

[IR] Advanced XML Compression - XBW

[IR] XPath for Search Query

[IR] Graph Compression

[IR] Bigtable: A Distributed Storage System for Semi-Structured Data

[IR] Huffman Coding

[IR] Arithmetic Coding

[IR] Dictionary Coding

[IR] BWT+MTF+AC

[IR] String Matching

[IR] Suffix Trees and Suffix Arrays

[IR] Time and Space Efficiencies Analysis of Full-Text Index Techniques

[IR] Extraction-based Text Summarization

 

其他:

[IR] Word Embeddings

 

【以上内容需随recommended system一起再过一遍,完善体系】 

 

 

AR基础

[Artoolkit] Marker Training

[Artoolkit] ARToolKit's SDK Structure on Android

[Artoolkit] Framework Analysis of nftSimple

[Artoolkit] kpmMatching & Tracking of nftSimple

[Artoolkit] Android Sample of nftSimple

[Artoolkit] Can I Use LGPL code for commercial application

[Artoolkit] Marker of nftSimple

[Artoolkit] ARSimpleNativeCarsProj for Multi Markers Tracking

 

[Unity3D] 01 - Try Unity3D

[Unity3D] 02 - ** Editor Scripting, Community Posts, Project Architecture

[Unity3D] 03 - Component of UI

[Unity3D] 04 - Event Manager

[Unity3D] 05 - Access to DB or AWS

【简单涉及3D建模知识点,非重点】

 

    

CV基础

概念:

[OpenCV] Install openCV in Qt Creator

[OpenCV] Basic data types - Matrix

[OpenCV] IplImage and Operation

[OpenCV] HighGUI

[OpenCV] Image Processing - Image Elementary Knowledge

[OpenCV] Image Processing - Grayscale Transform

[OpenCV] Image Processing - Frequency Domain Filtering

[OpenCV] Image Processing - Spatial Filtering

[OpenCV] Image Processing - Fuzzy Set

[OpenCV] Feature Extraction

[OpenCV] Feature Matching

[SLAM] Little about SLAM

[SLAM] Camera math knowledge

[Tango] Basic Knowledge

 

实践:

// 内容将合并,重新整理

[OpenCV] Samples 01: drawing【几何图案、文字等】

[OpenCV] Samples 02: [ML] kmeans【聚类算法】

[OpenCV] Samples 03: cout_mat【Mat计算能力】

[OpenCV] Samples 04: contours2【二值图案找轮廓】

[OpenCV] Samples 05: convexhull【散点的凸包轮廓】

[OpenCV] Samples 06: [ML] logistic regression【线性二分类】

[OpenCV] Samples 07: create_mask【鼠标圈图】

[OpenCV] Samples 08: edge【边缘检测】

[OpenCV] Samples 09: plImage <==> Mat 【色域通道分离】

[OpenCV] Samples 10: imagelist_creator【图片地址list参数】

[OpenCV] Samples 11: image sequence【视频流提取】

[OpenCV] Samples 12: laplace【视频流处理】

[OpenCV] Samples 13: opencv_version【版本信息显示】

[OpenCV] Samples 14: kalman filter【预测下一个状态】

[OpenCV] Samples 15: Background Subtraction and Gaussian mixture models【背景差分】

[OpenCV] Samples 16: Decompose and Analyse RGB channels【色域通道分离】

[OpenCV] Samples 17: Floodfill【聚类算法】

[OpenCV] Samples 18: Load image and check its attributes【图片属性】

 

扩展: 

[CNN] Face Detection

[Android Studio] Using Java to call OpenCV

[Android Studio] Using NDK to call OpenCV

[OpenCV] Install OpenCV 3.3 with DNN

[OpenCV] Install OpenCV 3.4 with DNN

 

趣码收集:

[Link] Face Swap Collection 

[Link] Face Swap without DLIB【代码可用】

 

  

算法基础

[Algorithm] Deferred Acceptance Algorithm

[Algorithm] Beating the Binary Search algorithm – Interpolation Search, Galloping Search

[Algorithm] Warm-up puzzles

[Algorithm] Asymptotic Growth Rate

[Algorithm] Polynomial and FFT

[Algorithm] Maximum Flow

[Algorithm] String Matching and Hashing

[Optimization] Greedy method

[Optimization] Dynamic programming

[Optimization] Advanced Dynamic programming

  


Everything here starts from 2016

posted @   郝壹贰叁  阅读(1714)  评论(2编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示