LangChain Tutorial

 

 

第三讲 LLM模块

“一锤子”提问 vs 持续问答式提问

from langchain.llms import OpenAI

import os
os.environ['OPENAI_API_KEY'] = '您的有效OpenAI API Key'

llm = OpenAI(model_name="text-davinci-003")
response = llm.predict("What is AI?")
print(response)

 

问答式有更丰富的“可控性”,如下。

from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage, SystemMessage

import os
os.environ['OPENAI_API_KEY'] = '您的有效OpenAI API Key'

chat = ChatOpenAI(temperature=0, model_name='gpt-3.5-turbo')
response = chat.predict_messages([
  HumanMessage(content="What is AI?")
])
print(response)


response = chat.predict_messages([
  SystemMessage(content="You are a chatbot that knows nothing about AI. When you are asked about AI, you must say 'I don\'t know'"),
  HumanMessage(content="What is deep learning?")
])
print(response)

 

任务生成

 

提示词模板

  • 一次性赋值

from langchain import PromptTemplate

multiple_input_prompt = PromptTemplate(
    input_variables=["color", "animal"],
    template="A {color} {animal} ."
)
multiple_input_prompt.format(color="black", animal="bear")


template = """
你精通多种语言,是专业的翻译官。你负责{src_lang}到{dst_lang}的翻译工作。
"""

prompt = PromptTemplate.from_template(template)  # 自动解析出其中的变量
prompt.format(src_lang="英文", dst_lang="中文")   # 然后使用

 

  • 分步赋值

不同阶段,分次给模板赋值。

 

聊天提示词模板

得到的只是模板结果,之后还需要chain去具体执行 by integrating LLM with this template。 

from langchain.prompts import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

system_template="You are a professional translator that translates {src_lang} to {dst_lang}."
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)

human_template="{user_input}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
chat_prompt.format_prompt(
    src_lang="English",
    dst_lang="Chinese",
    user_input="Did you eat in this morning?"
).to_messages()

[SystemMessage(content='You are a professional translator that translates English to Chinese.', additional_kwargs={}), HumanMessage(content='Did you eat in this morning?', additional_kwargs={}, example=False)]

  

少样本学习 FewShotPromptTemplate

这也算是大模型“开悟”的一个迷人特性。

  • examples

 

  • example + example_selector

这个设计,看似扯淡,参数交叉使用。。。 暂时不清楚有什么使用的必要性。

from langchain.prompts import PromptTemplate
from langchain.prompts import FewShotPromptTemplate
from langchain.prompts.example_selector import LengthBasedExampleSelector

examples = [
    {"input": "happy", "output": "sad"},
    {"input": "tall", "output": "short"},
    {"input": "energetic", "output": "lethargic"},
    {"input": "sunny", "output": "gloomy"},
    {"input": "windy", "output": "calm"},
]
example_prompt = PromptTemplate(
    input_variables=["input", "output"],
    template="Input: {input}\nOutput: {output}",
)
example_selector = LengthBasedExampleSelector(
    # 可选的样本数据
    examples=examples,
    # 提示词模版
    example_prompt=example_prompt,
    # 格式化的样本数据的最大长度,通过get_text_length函数来衡量
    max_length=4,
    # get_text_length: ...
)
dynamic_prompt
= FewShotPromptTemplate( example_selector=example_selector, example_prompt=example_prompt, prefix="Give the antonym of every input", suffix="Input: {adjective}\nOutput:", input_variables=["adjective"], ) # 输入量极小,因此所有样本数据都会被选中 print(dynamic_prompt.format(adjective="big"))

 

 

  

第四讲,数据连接 

Load

结构化文件,直接加载并解析,得到例如字典类型的结构化数据。

非结构化数据,BiliBili, S3, etc.

Transform

更多的处理,例如“分割块”

Embed + Store + Retrieve

向量化。

 

Ref: https://github.com/WTFAcademy/WTF-Langchain/blob/main/03_Data_Connections/03_Data_Connections.ipynb

以上只适用于 text这一种,但分割还有很多类型的文档,所以更朴实的方式如下:

  • 加载文档

from langchain.document_loaders import TextLoader

loader = TextLoader("./README.md")
docs = loader.load()

  

  • 按字符拆分

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(
    separator = "\n\n",
    chunk_size = 1000,
    chunk_overlap  = 200,
    length_function = len,
)

split_docs = text_splitter.split_documents(docs)
print(len(docs[0].page_content))
for split_doc in split_docs:
    print(len(split_doc.page_content))

 

  • 拆分代码

from langchain.text_splitter import RecursiveCharacterTextSplitter, Language

PYTHON_CODE = """
def hello_langchain():
    print("Hello, Langchain!")

# Call the function
hello_langchain()
"""
python_splitter = RecursiveCharacterTextSplitter.from_language(
    language=Language.PYTHON, chunk_size=50, chunk_overlap=0
)
python_docs = python_splitter.create_documents([PYTHON_CODE])
python_docs

 

  • Markdown文档拆分

from langchain.text_splitter import MarkdownHeaderTextSplitter

markdown_document = "# Chapter 1\n\n    ## Section 1\n\nHi this is the 1st section\n\nWelcome\n\n ### Module 1 \n\n Hi this is the first module \n\n ## Section 2\n\n Hi this is the 2nd section"

headers_to_split_on = [
    ("#", "Header 1"),
    ("##", "Header 2"),
    ("###", "Header 3"),
]

splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
splits = splitter.split_text(markdown_document)

splits

 

  • 按字符递归拆分

from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = 100,
    chunk_overlap  = 20,
    length_function = len,
)
texts = text_splitter.split_documents(docs)
print(len(docs[0].page_content))
for split_doc in texts:
    print(len(split_doc.page_content))

 

  • 按token拆分

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=100, chunk_overlap=0
)
split_docs = text_splitter.split_documents(docs)

split_docs

 

  • 向量化文档并分块

from langchain.embeddings import OpenAIEmbeddings
embeddings_model
= OpenAIEmbeddings(openai_api_key="") embeddings = embeddings_model.embed_documents( [ "你好!", "Langchain!", "你真棒!" ] ) embeddings

 

  • 存储并检索

这里展示了一个“完整”的过程。

from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
splitted_documents
= text_splitter.split_documents(docs)
db
= Chroma.from_documents(splitted_documents, OpenAIEmbeddings(openai_api_key=""))

 

开始通过向量检索,因为向量是模型可以理解的语言。

query = "什么是WTF Langchain?"
docs = db.similarity_search(query)
docs
     
docs = db.similarity_search_with_score(query)
docs

 

 

 

第五讲 链结构

 

基础链结构

LLM chain

Router chain

Sequential chain

Transformation chain

 

应用链结构

Document chains

Retrieval QA

 

构造简单链 LLM chain

# from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI

llm = ChatOpenAI(model_name="gpt-4-turbo",
                 temperature=0,
                 openai_api_key='sk-proj-saosile')

prompt = PromptTemplate(
    input_variables=["color"],
    template="What is the relationship between US and {color}? Please answoer in Chinese.",
)

chain = LLMChain(llm=llm, prompt=prompt)  # <----

print(chain.run("China"))

 

导入链

from langchain.chains import load_chain
import os

os.environ['OPENAI_API_KEY'] = "您的有效openai api key"
chain = load_chain("lc://chains/llm-math/chain.json")  # <----

chain.run("whats the area of a circle with radius 2?")

 

多链结构 Router chain

比较绕,但死记住这个模板即可~

from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.chains import ConversationChain
from langchain.chains.router import MultiPromptChain
   
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE

llm = ChatOpenAI(model_name="gpt-4-turbo",
                 temperature=0,
                 openai_api_key='sk-proj-laji')
   
# 并行处理的工作流设计
naming_template = """你现在是一位武侠小说家,擅长起名字。
   这里是问题:
   {input}"""
   
math_template = """你现在是一位大学数学教授。
   这里是问题:
   {input}"""
   
const_prompt_infos = [
       {
           "name": "naming",
           "description": "我是中文名字专家",
           "prompt_template": naming_template,
       },
       {
           "name": "math",
           "description": "我是数学专家",
           "prompt_template": math_template,
       },
]
   
# -----------------------------------------
destination_chains = {}
for p_info in const_prompt_infos:
  name = p_info["name"]
  prompt_template = p_info["prompt_template"]
   
  prompt = PromptTemplate(template=prompt_template,
                           input_variables=["input"])
   
  chain = LLMChain(llm=llm, prompt=prompt)  <---- 初始化了一条“单链”
  # 这里准备好了这个destination_chains, 也就是2nd stage.
  destination_chains[name] = chain
   
default_chain = ConversationChain(llm=llm, output_key="text")
   
#
# 构建 路由链
# destinations
= [f"{p['name']}: {p['description']}" for p in const_prompt_infos] destinations_str = "\n".join(destinations) print(">>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>") print(destinations_str) router_template = MULTI_PROMPT_ROUTER_TEMPLATE.format(destinations=destinations_str) router_prompt = PromptTemplate(   template=router_template,   # <---- 提供了第一次路由的依据:description   input_variables=["input"],   output_parser=RouterOutputParser(),  # <---- ) router_chain = LLMRouterChain.from_llm(llm, router_prompt) # 由 路由提示词 构成的 路由链 # 并行处理然后选择一个很好的,是么? # 这是一个 多提示词链 chain = MultiPromptChain( router_chain=router_chain, destination_chains=destination_chains, default_chain=default_chain, verbose=True, ) print(chain.run("给我一个很土但听起来比较好养活的男孩小名,比较传统的"))

 

多链结构 Sequential chain

可见如下,就是两个“单链”,然后通过 SimpleSequentialChain连接起来。

 

文本处理 Transformation chain

在處理 LLM 或資料流程時,經常需要進行一系列的資料轉換。這就是 Transformation Chain 發揮作用的地方。

Transformation Chain 是一個通用的轉換 chain ,可以幫助開發者在不更改原始資料的情況下,對其進行預處理或格式轉換,並且通常會搭配 Sequential Chain 使用。以下面這段程式碼為例,就是把輸入的文本只取前三段來使用。

def transform_func(inputs: dict):
    text = inputs["text"]
    shortened_text = "\n\n".join(text.split("\n\n")[:3])
    return {"output_text": shortened_text}


transform_chain = TransformChain(
    input_variables=["text"], output_variables=["output_text"], transform=transform_func
)

 

Documentchain type 长文本处理链

  • Retrieval QA stuff type

  • Refine type

  • Map reduce

Todo list.

  • Map rerank

Todo list. 

 

 

 

第六讲 代理人模块 (重难点)

让 LLM 了解之前的对话内容。

Paper: https://research.google/blog/react-synergizing-reasoning-and-acting-in-language-models/

Paper: https://github.com/AGI-Edgerunners/Plan-and-Solve-Prompting

 

** 简单例子 **

[1] 这里初始化了一个agent,手持一个工具套件,里面有两个工具,一个搜索serpapi,以及另一个llm-math。

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.llms import OpenAI

llm = OpenAI(temperature=0)
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# What is a tool like this tools[1].name, tools[1].description agent = initialize_agent(tools,                llm,                agent="zero-shot-react-description",                verbose=True)

 

[2] 然后直接激活agent。Agent将自动在tools中找合适的去执行。

怎么感觉类似并行链?Router Chain. 或者说代理就是其封装后的实现?

 

以上这个简单的例子,看似跳过了很多中间步骤~

 

** 标准例子 **

Agent = LLM + MEM + TOOLs
 
可见,以上又多了 agent_kwargs and MEM。以下是相对完整的初始化 agent的 参数。
#初始化 agent
agent = initialize_agent(
    tools,                            # 配置工具集
    llm,                              # 配置大语言模型 负责决策
    agent=AgentType.OPENAI_FUNCTIONS, # 设置 agent 类型 https://python.langchain.com/docs/modules/agents/agent_types/openai_functions_agent
    verbose=True,
    agent_kwargs=agent_kwargs,        # 设定 agent 角色
    memory=memory,                    # 配置记忆模式
)

llm 的选择要匹配 AgentType.OPENAI_FUNCTIONS。 

 

  • 设定 agent 角色 by agent_kwargs

描述当前 agent 是个什么人。

https://flowgpt.com/ 会有各种agent的描述用于定义。

#初始话角色详细描述
system_message = SystemMessage(
    content="""You are a world class researcher, who can do detailed research on any topic and produce facts based results; 
            you do not make things up, you will try as hard as possible to gather facts & data to back up the research

            Please make sure you complete the objective above with the following rules:
            1/ You should do enough research to gather as much information as possible about the objective
            2/ If there are url of relevant links & articles, you will scrape it to gather more information
            3/ After scraping & search, you should think "is there any new things i should search & scraping based on the data I collected to increase research quality?" If answer is yes, continue; But don't do this more than 5 iteratins
            4/ You should not make things up, you should only write facts & data that you have gathered
            5/ In the final output, You should include all reference data & links to back up your research; You should include all reference data & links to back up your research
            6/ In the final output, You should include all reference data & links to back up your research; You should include all reference data & links to back up your research"""
)
#初始化 agent 角色模版 agent_kwargs = { "extra_prompt_messages": [MessagesPlaceholder(variable_name="memory")], "system_message": system_message, }

 

  • 初始化“记忆”类型 by memory

#初始化记忆类型
memory = ConversationSummaryBufferMemory(
    memory_key="memory", return_messages=True, llm=llm, max_token_limit=300)

 

  • “工具” 初始化

在列表中,可见这里有两个工具。

#初始化 agent 可使用的工具集合
tools = [
    Tool(
        name="Search",
        func=search,
        description="useful for when you need to answer questions about current events, data. You should ask targeted questions"
    ),
    ScrapeWebsiteTool(),
]

 

Tool 1 --> 第一种策略,通过API得到Google搜索结果。www.browserless.io

#调用 Google search by Serper
def search(query):
    serper_google_url = os.getenv("SERPER_GOOGLE_URL")
    print(f"Serper Google Search URL: {serper_google_url}")

    payload = json.dumps({
        "q": query
    })

    headers = {
        'X-API-KEY': serper_api_key,
        'Content-Type': 'application/json'
    }

    response = requests.request("POST", serper_google_url, headers=headers, data=payload)

    print(f'Google 搜索结果: \n {response.text}')
    return response.text

 

Tool 2 --> 第二种策略,判断Google搜索结果中的“条目”,有价值的则 “进一步” 打开 进一步看细节。

class ScrapeWebsiteInput(BaseModel):
    """Inputs for scrape_website"""
    target: str = Field(
        description="The objective & task that users give to the agent")
    url: str = Field(description="The url of the website to be scraped")


class ScrapeWebsiteTool(BaseTool):
    name = "scrape_website"
    description = "useful when you need to get data from a website url, passing both url and objective to the function; DO NOT make up any url, the url should only be from the search results"
    args_schema: Type[BaseModel] = ScrapeWebsiteInput

    def _run(self, target: str, url: str):
        return scrape_website(target, url)   # ----> 进一步 浏览 web details

    def _arun(self, url: str):
        raise NotImplementedError("error here")

根据具体 URL 爬取网页内容,给出最终解答。

# 根据 url 爬取网页内容,给出最终解答。
# target :分配给 agent 的初始任务
# url :   Agent 在完成以上目标时所需要的URL,完全由Agent自主决定并且选取,其内容或是中间步骤需要,或是最终解答需要
def scrape_website(target: str, url: str):
    print(f"开始爬取: {url}...")

    headers = {
        'Cache-Control': 'no-cache',
        'Content-Type': 'application/json',
    }

    payload = json.dumps({
        "url": url
    })

    post_url = f"https://chrome.browserless.io/content?token={browserless_api_key}"
    response = requests.post(post_url, headers=headers, data=payload)

    #如果返回成功
    if response.status_code == 200:
        soup = BeautifulSoup(response.content, "html.parser")
        text = soup.get_text()
        print("爬取的具体内容:", text)

        #控制返回内容长度,如果内容太长就需要切片分别总结处理
        if len(text) > 5000:
            #总结爬取的返回内容
            output = summary(target, text)
            return output
        else:
            return text
    else:
        print(f"HTTP request failed with status code {response.status_code}")

趴取后总结网页内容。

# 如果需要处理的内容过长,先切片分别处理,再综合总结
# 使用 Map-Reduce 方式
def summary(target, content):
    #model list : https://platform.openai.com/docs/models
    # gpt-4-32k   gpt-3.5-turbo-16k-0613
    llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-16k-0613")

    #定义大文本切割器
    # chunk_overlap 是一个在使用 OpenAI 的 GPT-3 或 GPT-4 API 时可能会遇到的参数,特别是当你需要处理长文本时。
    # 该参数用于控制文本块(chunks)之间的重叠量。
    # 上下文维护:重叠确保模型在处理后续块时有足够的上下文信息。
    # 连贯性:它有助于生成更连贯和一致的输出,因为模型可以“记住”前一个块的部分内容。
    text_splitter = RecursiveCharacterTextSplitter(
        separators=["\n\n", "\n"], chunk_size=5000, chunk_overlap=200)


    docs = text_splitter.create_documents([content])
    map_prompt = """
    Write a summary of the following text for {target}:
    "{text}"
    SUMMARY:
    """
    map_prompt_template = PromptTemplate(
        template=map_prompt, input_variables=["text", "target"])

    summary_chain = load_summarize_chain(  # 长文本链处理
        llm=llm,
        chain_type='map_reduce',
        map_prompt=map_prompt_template,
        combine_prompt=map_prompt_template,
        verbose=True
    )

    output = summary_chain.run(input_documents=docs, target=target)

    return output

 

 

Agent 角色扮演构造数据集

Ref: CAMEL:角色扮演的Agent生成高质量对话数据集

CAMEL用于生成高质量对话,那么也可以生成剧场对话咯。对于剧场,重要的是冲突制造,例如左派右派对于同一个问题的探讨,主持人(导演)对于节奏的把控(作为admin的代理人)。

 

实践:剧本生成

这是结构化的结果。

[
    Line(character="郭德纲", content="各位观众朋友们好,我是郭德纲。"),
    Line(character="于谦",   content="我是于谦,郭老师的老搭档。"),
    Line(character="郭德纲", content="今天咱们聊聊悉尼西部的大动作,听说那边要开新机场,还没开呢,公交车线路都规划好了。"),
    Line(character="于谦",   content="是啊,这不是有点儿本末倒置吗?机场还是图纸上的,公交车倒先跑起来了。"),
    Line(character="郭德纲", content="这叫先行先试,咱们这叫有备无患。不过听说这公交不仅要服务机场,还要连着周边社区,这是要把整个西悉尼变成一个大车站啊。"),
    Line(character="于谦",   content="对,还有个叫布拉德菲尔德的地方,要建个新的换乘站和公交车总站。这名字听着就高大上,不知道到时候车站是不是也得高大上些。"),
    Line(character="郭德纲", content="高不高大上不知道,反正先得和地主老板们商量商量,毕竟人家的地你得先说好话。"),
    Line(character="于谦",   content="这不就跟相亲一样,先得见家长,家长满意了,这婚事儿才好办。"),
    Line(character="郭德纲", content="说到底,这还是为了方便大家,到时候不仅有公交,还有地铁,连高速都不收费。"),
    Line(character="于谦",   content="这可真是大手笔,不收费的高速在咱们这儿可不多见,这下可好,不用担心塞车,直接飞一样的感觉。"),
    Line(character="郭德纲", content="对,不过这飞的不是车,是人的心情。想想看,从家门口坐公交,转地铁,再到机场,全程无缝接驳,多美!"),
    Line(character="于谦",   content="美是美,就怕到时候人多,咱们这美好的心情也得排队等候。"),
    Line(character="郭德纲", content="那也比堵在路上强,至少人在动,心情也跟着动。"),
    Line(character="于谦",   content="说的也是,动心动情,这才是生活。对了,要是有兴趣了解更多,还可以去新南威尔士交通部的网站看看。"),
    Line(character="郭德纲", content="看来这次咱们不仅是聊天,还得当导游,带大家先睹为快啊。"),
]

 

关键函数设计。

 def news2script(news):
     # 选好一个大模型     llm = ChatOpenAI(
         model_name="gpt-4-turbo",
         temperature=0,
         openai_api_key='sk-proj-hao123')
 
     # ---------------------------------------------
     # 构造一个 chain, 包括 llm + prompt template
     # ---------------------------------------------
 
     summary_prompt_template = """Summarize the news please:
        "{text}"
        150 words in Chinese language. """
     chinese_summary_prompt = PromptTemplate(template=summary_prompt_template, input_variables=["text"])
 
     chain = load_summarize_chain(llm, prompt=chinese_summary_prompt)
     # Run!
summary = chain.run(doc) # 这里的参数就是“输入”

  
################################################################################################### # 生成对话的具备 by chat llm. ###################################################################################################
# 可以选个不同的模型 openaichat = ChatOpenAI( model_name="gpt-4-turbo", temperature=0, openai_api_key='sk-proj-hao123') xiangsheng_prompt_template = """\ 我将给你一段新闻的概括,请按照要求把这段新闻改写成郭德纲和于谦的对口相声剧本。 新闻:"{新闻}" 要求:"{要求}" {output_instructions} """ parser = PydanticOutputParser(pydantic_object=XiangSheng) # --> parser definition. ## xiangsheng_prompt = PromptTemplate.from_template(template=xiangsheng_prompt_template) xiangsheng_prompt = PromptTemplate( template=xiangsheng_prompt_template, input_variables=["新闻", "要求"], partial_variables={"output_instructions": parser.get_format_instructions()} ) # chat model 的参数需要的格式如下, and run! msg = [HumanMessage( content=xiangsheng_prompt.format(新闻=summary, 要求="风趣幽默,十分讽刺,对话剧本是郭德纲和于谦,以他们的自我介绍为开头"))] res = openaichat(msg) xiangsheng = parser.parse(res.content) return xiangsheng

 

其他部分,如下。

 from langchain.document_loaders import UnstructuredURLLoader
 from langchain.text_splitter import RecursiveCharacterTextSplitter
 from langchain.llms import OpenAI
 from langchain.chat_models import ChatOpenAI
 from langchain.prompts import PromptTemplate
 from langchain.schema import HumanMessage
 from langchain.output_parsers import PydanticOutputParser
 from langchain.chains.summarize import load_summarize_chain
 
 from pydantic import BaseModel, Field
 
 
 def url2News(url):
     text_splitter = RecursiveCharacterTextSplitter(
         separators=["Consultation about", "Share via"],
         chunk_size=1000,
         chunk_overlap=20,
         length_function=len)
 
     loader = UnstructuredURLLoader([url])
 
     # data = loader.load()
     data = loader.load_and_split(text_splitter=text_splitter)
     return data[0:2]
 
 class Line(BaseModel):
     character: str = Field(description="说这句台词的角色名字")
     content: str = Field(description="台词的具体内容,其中不再包括角色的名字")
 
 class XiangSheng(BaseModel):
     script: list[Line] = Field(description="一段相声的台词剧本")

 

posted @ 2024-04-29 14:44  郝壹贰叁  阅读(56)  评论(0编辑  收藏  举报