[yolov3] Train your own detector

Training YOLOv3 : Deep Learning based Custom Object Detector

Starting with OpenCV 3.4.2, you can easily use YOLOv3 models in your own OpenCV application.

 

 

Training YOLOv3 : Deep Learning based Custom Object Detector

完整的应用流程。

Code: https://github.com/spmallick/learnopencv/tree/master/YOLOv3-Training-Snowman-Detector

 

YOLOv3 Series 一个系列视频教学。

 

TF训练yolov3,不知道部署有没有问题。

https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3

 

 

 

Why AlexeyAB/darknet


前言: 自从Joseph Redmon提出了yolov3后,其darknet仓库已经获得了16k的star,足以说明darknet的流行。该作者最新一次更新也是一年前了,没有继续维护。不过自来自俄国的大神AlexeyAB在不断地更新darknet, 不仅添加了darknet在window下的适配,而且实现了多种SOTA目标检测算法。AlexeyAB也在库中提供了一份详细的建议,从编译、配置、涉及网络到测量指标等,一应俱全。通过阅读和理解AlexeyAB的建议,可以为我们带来很多启发。本文是来自翻译AlexeyAB的darknet中的README,并在翻译的过程中加入我们的一些经验。

 

 

 

 

 

YunYang1994/tensorflow-yolov3


ref: https://github.com/YunYang1994/tensorflow-yolov3

 

 

 

 

zzh8829/yolov3-tf2

可能有点参考价值,但以实际为准。

Benchmark (No Training Yet)

Numbers are obtained with rough calculations from detect_video.py

Macbook Pro 13 (2.7GHz i5)

Detection416x416320x320608x608
YoloV3 1000ms 500ms 1546ms
YoloV3-Tiny 100ms 58ms 208ms

Desktop PC (GTX 970)

Detection416x416320x320608x608
YoloV3 74ms 57ms 129ms
YoloV3-Tiny 18ms 15ms 28ms

AWS g3.4xlarge (Tesla M60)

Detection416x416320x320608x608
YoloV3 66ms 50ms 123ms
YoloV3-Tiny 15ms 10ms 24ms

RTX 2070 (credit to @AnaRhisT94)

Detection416x416
YoloV3 predict_on_batch 29-32ms
YoloV3 predict_on_batch + TensorRT 22-28ms

Darknet version of YoloV3 at 416x416 takes 29ms on Titan X. Considering Titan X has about double the benchmark of Tesla M60, Performance-wise this implementation is pretty comparable.

 

 

 

posted @   郝壹贰叁  阅读(75)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示