[TF Lite] Re-train ssd_mobilenet_v1_quantized_coco
Resources
[1] How to quantify ssd_mobilenet_v1_coco model and toco to .tflite ? #18829
方法论
一、开始训练
TF是个坑,但使用对的命令就可以了。
python object_detection/legacy/train.py --train_dir=training/ --pipeline_config_path=object_detection/ssd_mobilenet_v2_quantized_300x300_coco_2019_01_03/pipeline.config python object_detection/legacy/train.py --train_dir=training/ --pipeline_config_path=object_detection/ssd_mobilenet_v1_coco_2018_01_28/pipeline.config python object_detection/legacy/train.py --train_dir=training/ --pipeline_config_path=object_detection/ssd_mobilenet_v2_coco_2018_03_29/pipeline.config ython object_detection/model_main.py --train_dir=training/ --pipeline_config_path=object_detection/ssd_mobilenet_v1_quantized_300x300_coco14_sync_2018_07_18/pipeline.config
If using rtx 2080, this code may be added for some tricky issues: Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR #34695
gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e)
二、训练结果
/* implement */
三、模型转换
/* implement */
/* implement */
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律