[GPU] Install H2O.ai
一、前言
主页:https://www.h2o.ai/products/h2o4gpu/
Solver Classes
Among others, the solver can be used for the following classes of problems
-
- GLM: Lasso, Ridge Regression, Logistic Regression, Elastic Net Regulariation
- KMeans
- Gradient Boosting Machine (GBM) via XGBoost
- Singular Value Decomposition(SVD) + Truncated Singular Value Decomposition
- Principal Components Analysis(PCA)
注意事项:安装升级驱动时,先切换为x-windows状态;安装cuda时,不安装自带的驱动,因为之前已经安装过了。
hadoop@unsw-ThinkPad-T490:~/NVIDIA_CUDA-10.1_Samples/bin/x86_64/linux/release$ nvidia-smi Thu Nov 14 10:59:21 2019 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 440.31 Driver Version: 440.31 CUDA Version: 10.2 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 GeForce MX250 Off | 00000000:3C:00.0 Off | N/A | | N/A 58C P0 N/A / N/A | 390MiB / 2002MiB | 0% Default | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 1728 G /usr/lib/xorg/Xorg 190MiB | | 0 1906 G /usr/bin/gnome-shell 136MiB | | 0 2664 G ...uest-channel-token=12816552660085767439 59MiB | +-----------------------------------------------------------------------------+
三、测试
当迭代更多次时,h2o的优势开始显现;至于“预测”,cpu已经非常快。
import os import time from sklearn.linear_model import MultiTaskLasso, Lasso from sklearn.datasets import load_svmlight_file from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error import h2o4gpu import h2o4gpu.util.import_data as io import h2o4gpu.util.metrics as metrics import pandas as pd import numpy as np #from joblib import Memory #mem = Memory("./mycache") # This maybe a tricky way to load files. ##@mem.cache def get_data(): data = load_svmlight_file("/home/hadoop/YearPredictionMSD") return data[0], data[1] print("Loading data.") train_x, train_y = load_svmlight_file("/home/hadoop/YearPredictionMSD") train_x = train_x.todense() test_x, test_y = load_svmlight_file("/home/hadoop/YearPredictionMSD.t") test_x = test_x.todense() for max_iter in [100, 500, 1000, 2000, 4000, 8000]: print("="*80) print("Setting up solver, msx_iter is {}".format(max_iter)) model = h2o4gpu.Lasso(alpha=0.01, fit_intercept=False, max_iter=max_iter) #model = Lasso(alpha=0.1, fit_intercept=False, max_iter=500) time_start=time.time() model.fit(train_x, train_y) time_end=time.time() print('train totally cost {} sec'.format(time_end-time_start)) time_start=time.time() y_pred_lasso = model.predict(test_x) y_pred_lasso = np.squeeze(y_pred_lasso) time_end=time.time() print('test totally cost {} sec'.format(time_end-time_start)) print(y_pred_lasso.shape ) print(test_y.shape ) print(y_pred_lasso[:10]) print(test_y[:10]) mse = mean_squared_error(test_y, y_pred_lasso) print("mse on test data : %f" % mse) r2_score_lasso = r2_score(test_y, y_pred_lasso) print("r^2 on test data : %f" % r2_score_lasso)
End.
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律