[Optimized Python] "Generator": calculating prime

高性能编程


几个核心问题

• 生成器是怎样节约内存的?
• 使用生成器的最佳时机是什么?
• 我如何使用 itertools 来创建复杂的生成器工作流
• 延迟估值何时有益,何时无益?

 

From: https://www.dataquest.io/blog/python-generators-tutorial/

• The basic terminology needed to understand generators

• What a generator is

• How to create your own generators

• How to use a generator and generator methods

• When to use a generator

 

 

表示数列

有限数列情况

案例一:xrange,节省内存

自定义xrange使用yield,采用的方法是依次计算。 

目前的range具备了这个特性。 

In [16]: def xrange(start, stop, step=1): 
    ...:     while start < stop: 
    ...:         yield start 
    ...:         start += step 
    ...:                                                                        
                                                                   
In [17]: for i in xrange(1,100): 
    ...:     print(i) 

 

无限数列情况

案例二:Fibonacci Sequence

def fibonacci(n):
    a, b = 0, 1
    while n > 0:
        yield b
        a, b = b, a + b
        n -= 1


def Fibonacci_Yield(n):
    # return [f for i, f in enumerate(Fibonacci_Yield_tool(n))]
    return list(fibonacci(n))

 

案例三:fibonacci中有几个奇数

for 循环中的自定义序列。

def fibonacci_transform():
  count = 0
  for f in fibonacci():
    if f > 5000: 
      break
    if f % 2 == 1: 
      count += 1

  return count 

 

 

生成器的延时估值

—— 主要关注如何处理大数据,并具备什么优势。

Ref: Python Generators

Big Data. This is a somewhat nebulous term, and so we won’t delve into the various Big Data definitions here. Suffice to say that any Big Data file is too big to assign to a variable.

尤其是List不方便一下子装载到内存的时候。

  

各种形式的生成器

  • Load beer data in big data.
beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1"))

建议把这里的open事先改为:with ... as。 

  • Laziness and generators

Once we ask for the next value of a generator, the old value is discarded.

Once we go through the entire generator, it is also discarded from memory as well. 

 

进化历程

  • Build pipeline

beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1"))  # (1) 获得了“一行” lists = (l.split(",") for l in lines)   # (2) 对这“一行”进行分解

 

  • Operation in pipeline

(1) 先获得第一行的title,也就是column将作为key;然后从第二行开始的值作为value。

['BeerID', 'Name', 'URL', ..., 'PrimaryTemp', 'PrimingMethod', 'PrimingAmount', 'UserId\n']

zip()将两个list的元素配对,然后转换为dict。

# 样例模板
beer_data = "recipeData.csv"
lines = (line for line in open(beer_data, encoding="ISO-8859-1")) lists = (l.split(",") for l in lines)
#-----------------------------------------------------------------------------
# Take the column names out of the generator and store them, leaving only data columns = next(lists)    # 取第一行单独出来用 # Take these columns and use them to create an informative dictionar beerdicts = ( dict( zip(columns, line) ) for line in lists )

 

(2) 一行数据结合一次“标题栏” 构成了一条新的数据。然后,开始统计。

bd["Style"] 作为每一条数据的类别的key,拿来做统计用。

# 遍历每一条,并统计beer的类型
beer_counts = {}
for bd in beerdicts:
    if bd["Style"] not in beer_counts:
        beer_counts[bd["Style"]] = 1
    else:
        beer_counts[bd["Style"]] += 1

# 得到beer类型的统计结果:beer_counts
most_popular = 0
most_popular_type = None
for beer, count in beer_counts.items():
    if count > most_popular:
        most_popular      = count
        most_popular_type = beer

most_popular_type
>>> "American IPA"

# 再通过这个结果,处理相关数据 abv
= (float(bd["ABV"]) for bd in beerdicts if bd["Style"] == "American IPA")

  

 

 

质数生成 - prime number


next 结合 yield

定义了一个“内存环保”的计算素数的函数primes()。

def _odd_iter():
    n = 1
    while True:
        n = n + 2
        yield n

# 保存一个breakpoint,下次在此基础上计算

def _not_divisible(n): return lambda x: x % n > 0

# 对每一个元素x 都去做一次处理,参数是n
def primes(): yield 2 it = _odd_iter() # (1).初始"惰性序列"
while True: n = next(it) # (2).n是在历史记录的基础上计算而得 yield n it = filter(_not_divisible(n), it) # (3).构造新序列,it代表的序列是无限的;

p = primes()
next(p)
next(p)

这里妙在,在逻辑上保证了it代表的序列是个无限序列,但实际上在物理意义上又不可能。

例如,当n = 9时?首选,n不可能等于9,因为后面会“不小心”yield出去。

 

闭包带来的问题

Stack Overflow: How to explain this “lambda in filter changes the result when calculate primes"

此问题涉及到 Lambda如何使用,以及闭包的风险:[Python] 07 - Statements --> Functions

# odd_iter = filter(not_divisible(odd), odd_iter)  # <--(1)
odd_iter = filter((lambda x: x%odd>0) , odd_iter)  # <--(2)

     当yield的这种lazy机制出现时,谨慎使用lambda;注意保护好”内部变量“。

 

质数生成的"高效方案"

# Sieve of Eratosthenes
# Code by David Eppstein, UC Irvine, 28 Feb 2002
# http://code.activestate.com/recipes/117119/

def gen_primes():
    """ Generate an infinite sequence of prime numbers.
    """
    # Maps composites to primes witnessing their compositeness.
    # This is memory efficient, as the sieve is not "run forward"
    # indefinitely, but only as long as required by the current
    # number being tested.
    #
    D = {}
    
    # The running integer that's checked for primeness
    q = 2
    
    while True:
      print()
      print("loop: {}, {}".format(q, D))
        if q not in D:
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations
            # 
            yield q
            D[q * q] = [q]
        else:
            # q is composite. D[q] is the list of primes that
            # divide it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next 
            # multiples of its witnesses to prepare for larger
            # numbers
            # 
            for p in D[q]:
                D.setdefault(p + q, []).append(p)
print("else: {}, {}".format(q, D))
del D[q]
        
        q += 1

 

...

loop: 2, {}
2

loop: 3, {4: [2]}
3

loop: 4, {4: [2], 9: [3]}
else: 4, {4: [2], 9: [3], 6: [2]}

loop: 5, {9: [3], 6: [2]}
5

loop: 6, {9: [3], 6: [2], 25: [5]}
else: 6, {9: [3], 6: [2], 25: [5], 8: [2]}

loop: 7, {9: [3], 25: [5], 8: [2]}
7

loop: 8, {9: [3], 25: [5], 8: [2], 49: [7]}
else: 8, {9: [3], 25: [5], 8: [2], 49: [7], 10: [2]}

loop: 9, {9: [3], 25: [5], 49: [7], 10: [2]}
else: 9, {9: [3], 25: [5], 49: [7], 10: [2], 12: [3]}

loop: 10, {25: [5], 49: [7], 10: [2], 12: [3]}
else: 10, {25: [5], 49: [7], 10: [2], 12: [3, 2]}

loop: 11, {25: [5], 49: [7], 12: [3, 2]}
11

loop: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11]}
else: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11], 15: [3]}
else: 12, {25: [5], 49: [7], 12: [3, 2], 121: [11], 15: [3], 14: [2]}

loop: 13, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2]}
13

loop: 14, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2], 169: [13]}
else: 14, {25: [5], 49: [7], 121: [11], 15: [3], 14: [2], 169: [13], 16: [2]}

loop: 15, {25: [5], 49: [7], 121: [11], 15: [3], 169: [13], 16: [2]}
else: 15, {25: [5], 49: [7], 121: [11], 15: [3], 169: [13], 16: [2], 18: [3]}

loop: 16, {25: [5], 49: [7], 121: [11], 169: [13], 16: [2], 18: [3]}
else: 16, {25: [5], 49: [7], 121: [11], 169: [13], 16: [2], 18: [3, 2]}

loop: 17, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2]}
17

loop: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17]}
else: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17], 21: [3]}
else: 18, {25: [5], 49: [7], 121: [11], 169: [13], 18: [3, 2], 289: [17], 21: [3], 20: [2]}

loop: 19, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2]}
19

loop: 20, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2], 361: [19]}
else: 20, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 20: [2], 361: [19], 22: [2]}

loop: 21, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 361: [19], 22: [2]}
else: 21, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 21: [3], 361: [19], 22: [2], 24: [3]}

loop: 22, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 22: [2], 24: [3]}
else: 22, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 22: [2], 24: [3, 2]}

loop: 23, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2]}
23

loop: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23]}
else: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23], 27: [3]}
else: 24, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 24: [3, 2], 529: [23], 27: [3], 26: [2]}

loop: 25, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2]}
else: 25, {25: [5], 49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5]}

loop: 26, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5]}
else: 26, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 26: [2], 30: [5], 28: [2]}

loop: 27, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 30: [5], 28: [2]}
else: 27, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 27: [3], 30: [5, 3], 28: [2]}

loop: 28, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3], 28: [2]}
else: 28, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3, 2], 28: [2]}

loop: 29, {49: [7], 121: [11], 169: [13], 289: [17], 361: [19], 529: [23], 30: [5, 3, 2]}
29

 

End. 

posted @ 2019-08-22 22:34  郝壹贰叁  阅读(204)  评论(0编辑  收藏  举报