北京6环边界Geo范围的外边长与区域面积计算
from shapely.geometry import Polygon import geopandas as gpd # 粗略的北京六环道路 见 北京6环边界Geo范围数据 - by BBBike https://www.cnblogs.com/jeshy/p/14868463.html poly = Polygon([(116.072, 39.714), (116.075, 39.705), (116.078, 39.695), (116.099, 39.688), (116.122, 39.688), (116.167, 39.685), (116.202, 39.684), (116.275, 39.682), (116.37, 39.701), (116.415, 39.711), (116.459, 39.715), (116.516, 39.729), (116.543, 39.734), (116.604, 39.749), (116.627, 39.769), (116.648, 39.788), (116.665, 39.806), (116.673, 39.815), (116.685, 39.824), (116.691, 39.832), (116.697, 39.841), (116.707, 39.864), (116.712, 39.874), (116.715, 39.884), (116.718, 39.904), (116.718, 39.922), (116.714, 39.938), (116.715, 39.952), (116.716, 39.965), (116.709, 39.993), (116.7, 40.005), (116.69, 40.016), (116.661, 40.057), (116.656, 40.064), (116.652, 40.069), (116.643, 40.078), (116.64, 40.082), (116.637, 40.086), (116.633, 40.091), (116.63, 40.103), (116.629, 40.107), (116.627, 40.112), (116.624, 40.121), (116.623, 40.132), (116.617, 40.142), (116.613, 40.145), (116.608, 40.146), (116.601, 40.147), (116.584, 40.149), (116.542, 40.152), (116.501, 40.161), (116.468, 40.164), (116.399, 40.164), (116.344, 40.178), (116.279, 40.181), (116.173, 40.175), (116.15, 40.161), (116.138, 40.126), (116.129, 40.086), (116.11, 40.066), (116.08, 40.029), (116.071, 39.98), (116.099, 39.94), (116.122, 39.909), (116.122, 39.885), (116.11, 39.859), (116.096, 39.814), (116.091, 39.797), (116.084, 39.787), (116.077, 39.75), (116.073, 39.734)]) crs = {'init': 'epsg:4326'} gpoly = gpd.GeoSeries(poly, crs=crs) print('gpoly.crs:', gpoly.crs) gpoly = gpoly.to_crs(epsg=2436) print('gpoly.to_crs:', gpoly.crs) poly = gpoly[0] print('area(km*km):', poly.area/1.0e6) print('length(km):', poly.length/1.0e3) # area(km*km): 2487.234688144363 # length(km): 191.11631267814698 ############################################################# from shapely.geometry import Polygon import xml.etree.cElementTree as et import matplotlib.pyplot as plt import geopandas as gpd import numpy as np # 精确的北京六环道路 见 beijing_car_seg_6ring road.osm: (北京六环附近及往内的可驾驶道路网络(路网graph为连通图))https://www.cnblogs.com/jeshy/p/14763489.html # beijing_car_seg_6ring road.osm as the input data root = et.parse(r"./beijing_car_seg_6ring road.osm").getroot() nodes = {} for node in root.findall('node'): nodes[int(node.attrib['id'])] = (float(node.attrib['lon']), float(node.attrib['lat'])) edges = [] for way in root.findall('way'): element_nd = way.findall('nd') node_s, node_e = int(element_nd[0].attrib['ref']), int(element_nd[1].attrib['ref']) path = (node_s, node_e) edges.append(path) edge = edges[0] E = [] E.append(edge) edges.remove(edge) point_s, point_e = nodes[E[0][0]], nodes[E[0][1]] Point_lists = [] Point_lists.append(list(point_s)) Point_lists.append(list(point_e)) while len(edges) > 0: (node_f_s, node_f_e) = E[-1] for (node_n_s, node_n_e) in edges: if node_f_e == node_n_s: E.append((node_n_s, node_n_e)) point_f_e = nodes[node_n_e] Point_lists.append(list(point_f_e)) # print((node_n_s, node_n_e)) edges.remove((node_n_s, node_n_e)) break # Points.pop() print(E[0], '...', E[-2], E[-1]) print(Point_lists[0], '...', Point_lists[-2], Point_lists[-1]) road_line_arr = np.array(Point_lists) # 转换成二维坐标表示 six_ring_plg = Polygon(road_line_arr) # Polygon crs = {'init': 'epsg:4326'} gpoly = gpd.GeoSeries(six_ring_plg, crs=crs) print('gpoly.crs:', gpoly.crs) gpoly = gpoly.to_crs(epsg=2436) print('gpoly.to_crs:', gpoly.crs) poly = gpoly[0] print('area(km*km):', poly.area/1.0e6) print('length(km):', poly.length/1.0e3) # area(km*km): 2270.593649051131 # length(km): 187.67214535661333
个人学习记录